Background: The increasing insecticide resistance of Aedes albopictus puts many countries in Asia and Africa, including China, at great risk of a mosquito-borne virus epidemic. To date, a growing number of researches have focused on the relationship between intestinal symbiotic bacteria and their hosts' resistance to insecticides. This provides a novel aspect to the study of resistant mechanisms.
Methods/findings: This study reveals significant composition and dynamic changes in the intestinal symbiotic bacteria of Ae. albopictus between the resistant and susceptible strains based on full-length sequencing technology. The relative abundance of Serratia oryzae was significantly higher in the resistance strain than in the susceptible strains; also, the relative abundance of S. oryzae was significantly higher in deltamethrin-induced Ae. albopictus than in their counterpart. These suggested that S. oryzae may be involved in the development of insecticide resistance in Ae. albopictus. To explore the insecticide resistance mechanism, adult mosquitoes were fed with GFP-tagged S. oryzae, which resulted in stable bacterial enrichment in the mosquito gut without affecting the normal physiology, longevity, oviposition, and hatching rates of the host. The resistance measurements were made based on bioassays as per the WHO guidelines. The results showed that the survival rate of S. oryzae-enriched Ae. albopictus was significantly higher than the untreated mosquitoes, indicating the enhanced resistance of S. oryzae-enriched Ae. albopictus. Also, the activities of three metabolic detoxification enzymes in S. oryzae-enriched mosquitoes were increased to varying degrees. Meanwhile, the activity of extracellular enzymes released by S. oryzae was measured, but only carboxylesterase activity was detected. HPLC and UHPLC were respectively used to measure deltamethrin residue concentration and metabolite qualitative analysis, showing that the deltamethrin degradation efficiency of S. oryzae was positively correlated with time and bacterial amount. Deltamethrin was broken down into 1-Oleoyl-2-hydroxy-sn-glycero-3-PE and 2',2'-Dibromo-2'-deoxyguanosine. Transcriptome analysis revealed that 9 cytochrome P450s, 8 GSTs and 7 CarEs genes were significantly upregulated.
Conclusions: S. oryzae can be accumulated into adult Ae. albopictus by artificial feeding, which enhances deltamethrin resistance by inducing the metabolic detoxification genes and autocrine metabolic enzymes. S. oryzae is vertically transmitted in Ae. albopictus population. Importantly, S. oryzae can degrade deltamethrin in vitro, and use deltamethrin as the sole carbon source for their growths. Therefore, in the future, S. oryzae may also be commercially used to break down the residual insecticides in the farmland and lakes to protect the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896681 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0010208 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. Electronic address:
The global issue of insecticide resistance among pests is a major concern. Ectropis grisescens Warren (Lepidoptera: Geometridae), is a highly destructive leaf-eating pest distributed in tea plantations throughout China and Japan, and has exhibited resistance to various insecticides. Recent studies suggest that insect symbionts play a role in influencing insecticide resistance, however, their specific involvement in E.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Large-scale surveillance and informed vector control approaches are urgently needed to ensure that national malaria programs remain effective in reducing transmission and, ultimately, achieving malaria elimination targets. In South America, Anopheles darlingi is the primary malaria vector and is responsible for the majority of Plasmodium species transmission. However, little is known about the molecular markers associated with insecticide resistance in this species.
View Article and Find Full Text PDFPLoS One
January 2025
School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.
Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.
Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.
View Article and Find Full Text PDFFront Physiol
December 2024
Institute of Disinfection and Pest Control, Beijing Center for Disease Prevention and Control, Beijing, China.
Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!