High angular resolution diffusion imaging (HARDI) is a type of diffusion magnetic resonance imaging (dMRI) that measures diffusion signals on a sphere in q-space. It has been widely used in data acquisition for human brain structural connectome analysis. To more accurately estimate the structural connectome, dense samples in q-space are often acquired, potentially resulting in long scanning times and logistical challenges. This paper proposes a statistical method to select q-space directions optimally and estimate the local diffusion function from sparse observations. The proposed approach leverages relevant historical dMRI data to calculate a prior distribution to characterize local diffusion variability in each voxel in a template space. For a new subject to be scanned, the priors are mapped into the subject-specific coordinate and used to help select the best q-space samples. Simulation studies demonstrate big advantages over the existing HARDI sampling and analysis framework. We also applied the proposed method to the Human Connectome Project data and a dataset of aging adults with mild cognitive impairment. The results indicate that with very few q-space samples (e.g., 15 or 20), we can recover structural brain networks comparable to the ones estimated from 60 or more diffusion directions with the existing methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387547 | PMC |
http://dx.doi.org/10.1109/TMI.2022.3156868 | DOI Listing |
J Mood Anxiety Disord
March 2025
Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
The study of brain connectivity, both functional and structural, can inform us on the development of psychopathology. The use of multimodal MRI methods allows us to study associations between structural and functional connectivity, and how this relates to psychopathology. This may be especially useful during childhood and adolescence, a period where most forms of psychopathology manifest for the first time.
View Article and Find Full Text PDFJ Psychiatr Res
December 2024
State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China. Electronic address:
Background: The long-term impact of childhood maltreatment (CM) on an individual's physical and mental health is suggested to be mediated by altered neurodevelopment. However, the exact neurobiological consequences of CM remain unclear.
Methods: The present study aimed to investigate the relationship between CM and brain age based on structural magnetic resonance imaging data from a sample of 214 adults.
J Neurosurg
January 2025
1Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Switzerland.
Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.
Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.
Proc Natl Acad Sci U S A
January 2025
Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain.
Alzheimers Dement
December 2024
Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Background: Alzheimer's disease (AD) is a neurological disorder marked by progressive cognitive decline, memory deficits, and neuronal cell loss (Knopman, 2021). A brain region significantly impacted by the progression of AD is the subiculum, a structure responsible for spatial navigation, cognitive processes, and the modulation of emotional and affective behaviors within the hippocampus (Fanselow and Dong, 2010). Although subiculum cell loss has been well-established as an early indicator of AD (Carlesimo et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!