Optical photothermal infrared (O-PTIR) is a recently developed molecular spectroscopy technique that allows to noninvasively obtain chemical information on organic and inorganic samples at a submicrometric scale. The high spatial resolution (≈450 nm), lack of sample preparation, and comparability of the spectral results to traditional Fourier transform infrared spectroscopy make it a promising candidate for the analysis of cultural heritage. In this work, the potential of O-PTIR for the noninvasive characterization of small heritage objects (few cubic centimeters) is demonstrated on a series of degraded 16th century brass and glass decorative elements. These small and challenging samples, typically encountering limitations with existing noninvasive methods such as macroscopic x-ray powder diffraction and μRaman, were successfully characterized by O-PTIR, ultimately identifying the markers of glass-induced metal corrosion processes. The results clearly demonstrate how O-PTIR can be easily implemented in a noninvasive multianalytical strategy for the study of heritage materials, making it a fundamental tool for cultural heritage analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896789PMC
http://dx.doi.org/10.1126/sciadv.abl6769DOI Listing

Publication Analysis

Top Keywords

optical photothermal
8
photothermal infrared
8
infrared o-ptir
8
noninvasive characterization
8
cultural heritage
8
o-ptir
5
heritage
5
novel optical
4
o-ptir spectroscopy
4
noninvasive
4

Similar Publications

Synergizing microfluidics and plasmonics: advances, applications, and future directions.

Lab Chip

January 2025

Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.

In the past decade, interest in nanoplasmonic structures has experienced significant growth, owing to rapid advancements in materials science and the evolution of novel nanofabrication techniques. The activities in the area are not only leading to remarkable progress in specific applications in photonics, but also permeating to and synergizing with other fields. This review delves into the symbiosis between nanoplasmonics and microfluidics, elucidating fundamental principles on nanophotonics centered on surface plasmon-polaritons, and key achievements arising from the intricate interplay between light and fluids at small scales.

View Article and Find Full Text PDF

We report the design and development of a novel multifunctional nanostructure, RB-AuSiO_HSA-DOX, where tri-modal cancer treatment strategies-photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy-luminescent properties and targeting are integrated into the same scaffold. It consists of a gold core with optical and thermo-plasmonic properties and is covered by a silica shell entrapping a well-known photosensitizer and luminophore, Rose Bengal (RB). The nanoparticle surface was decorated with Human Serum Albumin (HSA) through a covalent conjugation to confer its targeting abilities and as a carrier of Doxorubicin (DOX), one of the most effective anticancer drugs in clinical chemotherapy.

View Article and Find Full Text PDF

Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.

View Article and Find Full Text PDF

Theoretical basis of all-optical modulation of a probe laser beam due to photothermal modulation of the aggregation state in organic dyes, with experimental proof of the principle.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil; Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil. Electronic address:

The inherent potential for self-assembly is a well-known attribute of organic dye molecules. This work takes advantage of the changes in dye photochemical and photophysical properties produced by the aggregation phenomenon, to investigate the behavior of all-optical modulation in molecular aggregates. The theoretical principles for a dual beam all-optical modulation, as well as the conception of an optical logic gate by exploring the aggregation phenomenon are discussed throughout the article.

View Article and Find Full Text PDF

Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!