Polytypes of two-dimensional transition metal dichalcogenide can extend the architecture and application of nanostructures. Herein, NbVSe alloy nanosheets in the full composition range () were synthesized by a colloidal reaction. At = 0.1-0.3, a phase transition occurred from various hexagonal (three 2H and one 4H types) phase NbSe to an atomically homogeneous 1T phase VSe. Density functional theory calculations also revealed a polytypic phase transition at = 0.3, which was shifted close to 0 in the presence of Se vacancies. Furthermore, the calculations validate favorable formation of Se vacancies at the phase transition. The sample at = 0.3 exhibited enhanced electrocatalytic activity toward the hydrogen evolution reaction (HER) in 0.5 M HSO. The Gibbs free energy indicates that the catalytic HER performance is correlated with the active Se vacancy sites of polytypic structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c10301DOI Listing

Publication Analysis

Top Keywords

phase transition
16
polytypic phase
8
activity hydrogen
8
hydrogen evolution
8
evolution reaction
8
transition
5
phase
5
transition nbvse
4
nbvse colloidal
4
colloidal synthesis
4

Similar Publications

Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.

View Article and Find Full Text PDF

Research and development of new intelligent foaming and discharging agent system.

Sci Rep

December 2024

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.

The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.

View Article and Find Full Text PDF

Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".

View Article and Find Full Text PDF

Magnetocaloric high-entropy alloys (HEAs) have recently garnered significant interest owing to their potential applications in magnetic refrigeration, offering a wide working temperature range and large refrigerant capacity. In this study, we thoroughly investigated the structural, magnetic, and magnetocaloric properties of equiatomic GdDyHoErTm HEAs. The as-cast alloy exhibits a single hexagonal phase, a randomly distributed grain orientation, and complex magnetism.

View Article and Find Full Text PDF

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!