Air pollution is a big ecumenical problem associated with public health around the world. The rapid development of nanotechnology worldwide resulted in a significant increase in human exposure with unknown particles, and ultimately leading to an increase in acute and chronic diseases. The effect of nanoparticles on pulmonary fibrosis has been reported in vivo and in vitro studies; however, the results are inconsistent. The present systematic review and meta-analysis of animal preclinical studies was conducted to assess the effect of nanoparticles on pulmonary fibrosis. A systematic search of online databases and gray literature as well as reference lists of retrieved studies was performed up to February 2019 to identify preclinical animal studies. Studies were assessed for methodological quality using the SYstematic Review Center for Laboratory animal Experimentation bias risk tool (SYRCLE's ROB tool). Pooled standardized mean difference (SMD) estimate with corresponding 95% CI was calculated using inverse-variance weights method while random effects meta-analysis was used, taking into account conceptual heterogeneity. To assess the robustness of pooled estimates as well as heterogeneity across studies, sensitivity analysis and Cochran statistic (with statistic) was carried out using Stata 11.0. Of 6494 retrieved studies, 85 were reviewed in depth for eligibility. 16 studies met the criteria for inclusion in this systematic review. The meta-analysis was conducted on 10 studies which had reported the mean of TGF-β in 7 days after exposure by nanoparticles jointly (exposure compared to no exposure). Findings showed that exposure to nanoparticles significantly induced pulmonary fibrosis (SMD: 4.12, 95% CI: 2.57-5.67). A statistical heterogeneity was found [ < 0.001 (Q statistics), = 83.0%] across studies. Nanoparticles were the most influencing in inducing pulmonary fibrosis in animal models. Sensitivity analysis demonstrated consistency of the results, indicating that the meta-analysis model was robust. Publication bias (using visual inspection and statistical tests) was unlikely in the association between nanoparticles and pulmonary fibrosis. We found that the nanoparticles significantly induce pulmonary fibrosis through increasing proinflammatory cytokine TGF-β and histopathological changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19338244.2021.2001637 | DOI Listing |
Respir Med Case Rep
January 2025
Department of Rheumatology of Lucania - UOSD of Rheumatology, "Madonna delle Grazie" Hospital, Matera, Italy.
Background: Anti-Ku antibodies are autoantibodies directed against the Ku protein complex involved in DNA repair. They are typically associated with overlap syndromes featuring polymyositis and systemic sclerosis. Isolated pulmonary involvement without myositis is exceedingly rare.
View Article and Find Full Text PDFCureus
December 2024
Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, PRT.
Anti-glomerular basement membrane disease is a rare small vessel vasculitis caused by the deposition of immunoglobulin G (IgG) autoantibodies in the basement membrane of glomerular capillaries and lung alveoli, leading to rapidly progressive renal failure and/or alveolar hemorrhage. We report the case of an 83-year-old female patient presenting with uremic symptoms, rapidly progressive kidney failure, and a high titer of anti-glomerular basement membrane antibodies. Given the urgent need for kidney replacement therapy, the substantial fibrosis and glomerular scarring observed in the kidney biopsy suggesting a chronic process, and the absence of pulmonary involvement, neither immunosuppressive treatment nor plasmapheresis was initiated, since a low likelihood of a favorable response to these interventions was expected.
View Article and Find Full Text PDFCureus
December 2024
Pulmonology, Jinnah Postgraduate Medical Centre, Karachi, PAK.
Background Interstitial lung diseases (ILDs) are a group of non-infectious diseases characterized by interstitial inflammation and fibrosis on histological examination. Gastroesophageal reflux disease (GERD) is common in this patient population, but whether there is a causal or coincidental relationship is not yet clear. It still remains unsettled how to diagnose GERD, and the role of different treatment modalities for GERD, in these lung disorders.
View Article and Find Full Text PDFPulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), markedly increasing patient mortality. Despite the established anti-fibrotic effects of mesenchymal stem cells (MSCs), numerous challenges hinder their clinical application. A recent study demonstrated that microvesicles (MVs) from MSCs (MSC-MVs) could attenuate ARDS-related pulmonary fibrosis and enhance lung function hepatocyte growth factor mRNA transcription.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. It is characterized by inflammation and fibrosis in the lung parenchyma and interstitium. Given its poor prognosis and limited treatment options, understanding the underlying molecular mechanisms is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!