Creating Hybrid Coordination Environment in Fe-Based Single Atom Catalyst for Efficient Oxygen Reduction.

ChemSusChem

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, P. R. China.

Published: June 2022

AI Article Synopsis

  • Researchers are focusing on enhancing single atom catalysts by optimizing their local chemistry environments, particularly the bonding between the catalyst and its support.
  • A new hybrid approach was developed for Fe-based single atom catalysts using N,S co-doped graphene oxide, which created unique active sites that improved performance in oxygen reduction reactions.
  • The study demonstrated that this new configuration outperformed traditional catalysts, highlighting the potential of hybrid designs to boost catalytic efficiency.

Article Abstract

Tailoring the local chemistry environment to optimize the geometric and electronic properties of single atom catalysts has received much attention recently. Yet, most efforts have been devoted to establishing the preferable binding between the solid support and the single metal atom. In this work, a hybrid coordination environment was created for Fe-based single atom catalysts, comprising inorganic anchoring site from the support and organic ligands from the precursor. Using N,S co-doped graphene oxide as the support, Fe phthalocyanine was selectively anchored by the N/S sites, creating the unique N/S-Fe-N active sites as evidenced by extended X-ray absorption fine structure and Mössbauer spectrometry. Compared with other analogues with different metal centers or support, N/S-Fe-N showed much improved activity in oxygen reduction reaction, delivering onset and half-wave potentials of 1.02 and 0.94 V. This was superior over the state-of-the-art 20 wt % Pt/C and the classic Fe-N carbon catalysts. Density functional theory calculations revealed that the interaction between phthalocyanine ligands and heteroatom dopant from the support pushed electrons of Fe site to para-position, facilitating O adsorption and activation. This work shows the exciting opportunities of creating a hybrid coordination environment in single atom catalysts and paves a new avenue of improving their catalytic performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311226PMC
http://dx.doi.org/10.1002/cssc.202200195DOI Listing

Publication Analysis

Top Keywords

single atom
16
hybrid coordination
12
coordination environment
12
atom catalysts
12
creating hybrid
8
fe-based single
8
oxygen reduction
8
single
5
atom
5
support
5

Similar Publications

Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion.

Chem Commun (Camb)

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.

View Article and Find Full Text PDF

Mechanism and catalytic activity of the water-gas shift reaction on a single-atom alloy Al/Cu (111) surface.

Nanoscale

January 2025

School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, 116024, P. R. China.

The mechanism and activity of the water-gas shift reaction (WGSR) on single-atom alloy Al/Cu (111) and Cu (111) surfaces were studied using GGA-PBE-D3. Al/Cu (111) exhibited bifunctional active sites, with the Al site being positively charged and the Cu site negatively charged due to electronic interactions. This led to selective adsorption of HO and CO.

View Article and Find Full Text PDF

Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems.

View Article and Find Full Text PDF

Asymmetric Coordination Engineering of Tin Single-Atom Catalysts Toward CO Electroreduction: the Crucial Role of Charge Capacity in Selectivity.

Small

January 2025

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.

Electrochemical reduction of CO is an efficient strategy for CO utilization under mild conditions. Tin (Sn) single-atom catalysts (SACs) are promising candidates due to their controllable CO/formate generation via asymmetric coordination engineering. Nevertheless, the factors that govern the selectivity remain unclear.

View Article and Find Full Text PDF

In this study, a detailed DFT investigation was conducted to systematically analyze the scavenging activity of six hydrazone compounds (1-6) against HOO˙ and CHOO˙ radicals. Three mechanistic pathways were explored: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SETPT), and sequential proton loss electron transfer (SPLET). These mechanisms were evaluated based on thermodynamic parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) in the gas phase, water, and pentyl ethanoate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!