A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioprinting small-diameter vascular vessel with endothelium and smooth muscle by the approach of two-step crosslinking process. | LitMetric

Three-dimensional bioprinting shows great potential for autologous vascular grafts due to its simplicity, accuracy, and flexibility. The 6-mm-diameter vascular grafts are used in clinic. However, producing small-diameter vascular grafts are still an enormous challenge. Normally, sacrificial hydrogels are used as temporary lumen support to mold tubular structure which will affect the stability of the fabricated structure. In this study, we have developed a new bioprinting approach to fabricating small-diameter vessel using two-step crosslinking process. The ¼ lumen wall of bioprinted gelatin mechacrylate (GelMA) flat structure was exposed to ultraviolet (UV) light briefly for gaining certain strength, while ¾ lumen wall showed as concave structure which remained uncrosslinked. Precrosslinked flat structure was merged towards the uncrosslinked concave structure. Two individual structures were combined tightly into an intact tubular structure after receiving more UV exposure time. Complicated tubular structures were constructed by these method. Notably, the GelMA-based bioink loaded with smooth muscle cells are bioprinted to form the outer layer of the tubular structure and human umbilical vein endothelial cells were seeded onto the inner surface of the tubular structure. A bionic vascular vessel with dual layers was fabricated successfully, and kept good viability and functionality. This study may provide a novel idea for fabricating biomimetic vascular network or other more complicated organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314886PMC
http://dx.doi.org/10.1002/bit.28075DOI Listing

Publication Analysis

Top Keywords

tubular structure
16
vascular grafts
12
structure
9
small-diameter vascular
8
vascular vessel
8
smooth muscle
8
two-step crosslinking
8
crosslinking process
8
lumen wall
8
flat structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!