This study evaluated intra- and interspecific variation regarding the susceptibility to insecticides of key pentatomid pests of soybean (Glycine max L.) and maize (Zea mays L.) crops in Brazil. To perform bioassays, populations of Euschistus heros (F.), Diceraeus (=Dichelops) furcatus (F.), Nezara viridula (L.), and Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae) were collected in soybean fields in Southern Brazil during the 2020/2021 crop season. Then, stink bugs were exposed to doses of commercial insecticides commonly applied for its control in dip-test bioassays using fresh green bean pods. In general, all stink bug species and populations studied were susceptible to acephate, acetamiprid + bifenthrin, imidacloprid + bifenthrin, and ethiprole, with mortality rates > 80%. Most populations of E. heros and D. furcatus, considered the main stink bugs that attack soybean and maize, respectively, presented low or intermediate susceptibility to acetamiprid + α-cypermethrin, ζ-cypermethrin + bifenthrin, dinotefuran + λ-cyhalothrin, and bifenthrin + carbosulfan. Except for bifenthrin + carbosulfan (mortality < 57%), secondary stink bugs species that attack soybean (N. viridula and P. guildinii) showed pronounced susceptibility to all insecticides tested, with mortality rates > 70%. In summary, the populations of E. heros and D. furcatus showed diminished susceptibility to various insecticides formulated with the mixture of neonicotinoids + pyrethroids, whereas N. viridula and P. guildinii were most susceptible to the insecticides evaluated. The implications of these findings to integrated and resistance management programs are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toac013 | DOI Listing |
Arch Biochem Biophys
December 2024
Department of Chemistry, University of South Florida, Tampa, Florida, 33620. Electronic address:
An important aspect of food security is the development of innovative insecticides, particularly ones that specifically target insect pests and exhibit minimal toxicity to mammals. The insect arylalkylamine N-acyltransferases (iAANATs) could serve as targets for novel insecticides that satisfy these criteria. There exists a wealth of structural and biochemical information for the iAANATs and iAANAT knockdown experiments show that these enzymes are critical to insect health.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin.
Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of s.l.
View Article and Find Full Text PDFFront Insect Sci
December 2024
Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea.
Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought.
View Article and Find Full Text PDFChin J Nat Med
December 2024
Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China. Electronic address:
Essential oils (EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light, heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!