The excited-state dynamics of indocyanine green (ICG) fundamentally determine its photophysical properties for phototheranostic. However, its dynamics are predictable to be susceptible toward intracellular viscosity due to its almost freely rotating structure, making the precise phototheranostic very challenging. Therefore, correlating the viscosity with the dynamics of ICG is of great importance and urgency for precise phototheranostic prospects. This study presents systemic investigations on the viscosity-dependent dynamics of ICG for phototheranostic. Femtosecond transient absorption (fs-TA) experiments elucidate a prolonged radiative transition (225 ps vs 152 ps) for ICG in a viscous environment, which benefits fluorescence. High viscosity remarkably extends the triplet excited-state lifetime of ICG but reduces its internal conversion (6.2 ps vs 2.2 ps). The extended triplet lifetime affords sufficient photosensitization time to enhance photodynamic therapy. A moderative internal conversion is unfavorable for heat production, resulting in inferior photothermal therapy. With this clear picture of excitation energy state dissipation in mind, we readily identified the safety laser power density for precise phototheranostic. This work provides an insightful understanding of viscosity-relevant excited-state dynamics toward phototheranostic, which is also beneficial for designing novel ICG derivatives with improved phototheranostic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202200112 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFThe intrinsic spontaneous and piezoelectric polarizations of GaN lead to the formation of triangular wells and barriers, resulting in the manifestation of chaotic transport models in GaN quantum well intersubband transition (ISBT) infrared detectors and giving rise to various adverse effects. The APSYS software was utilized to construct a novel GaN quantum well ISBT infrared detector in this study. By endeavoring to modify the quantum well structure, our objective was to precisely adjust the energy level of the first excited state (E1) to align with the apex of the triangular barrier.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia, 119991.
The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!