A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@tio&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis, characterization, and application of α-Fe O @TiO @SO H photo-Fenton catalyst for photocatalytic degradation of biologically pre-treated wood industry wastewater. | LitMetric

The efficiency of removing chemical oxygen demand (COD) and turbidity from wood wastewater was investigated using a sequencing batch reactor (SBR) and the photo-Fenton process. A total of 94.78% of COD reduction and 99.9% of turbidity removal were observed under optimum conditions of SBR, which consisted of an organic loading rate (OLR) of 0.453 kg COD m  day , mixed liquor suspended solids (MLSS) of 4564 mg L , and cycle time of 48 h. A magnetic α-Fe O @TiO @SO H nanocatalyst was prepared as a heterogeneous Fenton reagent. The Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and elemental mapping (MAP) analyses were performed to determine the structure and morphology of synthesized photocatalyst. The response surface methodology (RSM) was used to optimize the process based on a central composite design (CCD). The maximum photocatalytic degradation of 87.54% and COD reduction of 83.35% were achieved at a dosage of 0.6 g L of catalyst, 30 mg L of H O , and pH of 3.5 for 45 min. The results indicated that a combination of the SBR process and α-Fe O @TiO @SO H could be used as an effective method for the treatment of wood wastewater. PRACTITIONER POINTS: A combination of the SBR and photo-Fenton process was introduced as an impressive method for wood industry wastewater treatment. The efficiencies of COD, BOD , NO -N, PO -P, and color removal were obtained according to the standard limits in Iran. To our knowledge, this study is the first report of the use of synthesized α-Fe O @TiO @SO H photocatalyst for the wood industry wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.10695DOI Listing

Publication Analysis

Top Keywords

α-fe @tio
16
@tio @so
16
wood industry
12
industry wastewater
12
photocatalytic degradation
8
wood wastewater
8
sbr photo-fenton
8
photo-fenton process
8
cod reduction
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!