Background And Aims: IL-10-producing regulatory B cells (IL-10 + B cells), a dominant regulatory B cell (Breg) subset, foster tumor progression. However, the mechanisms underlying their generation in HCC are poorly understood. Ten-eleven translocation-2 (TET2), a predominant epigenetic regulatory enzyme in B cells, regulates gene expression by catalyzing demethylation of 5-methylcytosine into 5-hydroxymethyl cytosine (5hmC). In this study, we investigated the role of TET2 in IL-10 + B cell generation in HCC and its prospects for clinical application.

Approach And Results: TET2 activation in B cells triggered by oxidative stress from the HCC microenvironment promoted IL-10 expression, whereas adoptive transfer of Tet2 -deficient B cells suppressed HCC progression. The aryl hydrocarbon receptor is required for TET2 to hydroxylate Il10 . In addition, high levels of IL-10, TET2, and 5hmc in B cells indicate poor prognosis in patients with HCC. Moreover, we determined TET2 activity using 5hmc in B cells to evaluate the efficacy of anti-programmed death 1 (anti-PD-1) therapy. Notably, TET2 inhibition in B cells facilitates antitumor immunity to improve anti-PD-1 therapy for HCC.

Conclusions: Our findings propose a TET2-dependent epigenetic intervention targeting IL-10 + B cell generation during HCC progression and identify the inhibition of TET2 activity as a promising combination therapy with immune checkpoint inhibitors for HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.32442DOI Listing

Publication Analysis

Top Keywords

generation hcc
12
cells
9
tet2
9
ten-eleven translocation-2
8
il-10-producing regulatory
8
regulatory cells
8
antitumor immunity
8
il-10 cell
8
cell generation
8
hcc progression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!