Hydrogenation of CO is very attractive for transforming this greenhouse gas into valuable high energy density compounds. In this work, we developed a highly active and stable Ru/TiO catalyst for CO methanation prepared by a solgel method that revealed much higher activity in methanation of CO (ca. 4-14 times higher turnover frequencies at 140-210°C) than state-of-the-art Ru/TiO catalysts and a control sample prepared by wetness impregnation. This is attributed to a high concentration of O-vacancies, inherent to the solgel methodology, which play a dual role for 1) activation of CO and 2) transfer of electrons to interfacial Ru sites as evident from operando DRIFTS and EPR investigations. These results suggest that charge transfer from O-vacancies to interfacial Ru sites and subsequent electron donation from filled metal d-orbitals to antibonding orbitals of adsorbed CO are decisive factors in boosting the CO methanation activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861654 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.103886 | DOI Listing |
JACS Au
December 2024
Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan.
Controlling the nucleation, growth, and dissolution of Li is crucial for the high cycling stability in rechargeable Li metal batteries. The overpotential for Li nucleation (η) on Li alloys such as Li-Au is generally lower than that on metal current collectors (CCs) with very limited Li solubility like Cu. However, the alloying process of CC and its impact on the Li nucleation kinetics remain unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China. Electronic address:
In aquatic environments, the deposition behaviors of nanoplastics (NPs) are closely associated with interfacial interaction between NPs and iron (hydr)oxides minerals, which are typically coupled with solution chemistry and organic matter. However, the roles of solution chemistry and organic matter in the deposition behavior of NPs with iron (hydr)oxides minerals and related interfacial interaction mechanism are still poorly understood. In this study, the deposition behaviors of carboxyl-modified polystyrene nanoparticles (COOH-PSNPs) with magnetite were systematically investigated.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400 PR China. Electronic address:
The formation and growth of lithium dendrites is an ever-present and urgent problem in lithium-ion batteries (LIBs). At the same time, the low melting point of commercial polyolefin separators may lead to safety issues during application. On this basis, in this work, poly (m-phenylene isophthalamide) (PMIA)/Zr-based metal-organic framework (NH-UiO-66) composite separator was prepared by non-solvent induced phase separation (NIPS).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Vic 3010, Australia. Electronic address:
This work examined the effects of molecular weight (2-15 kDa) and concentration (10-30 mg/mL) of chitosan (CTS) on the binding capacity and interface behavior between octenyl succinic acid sodium starch (OSS) and CTS, as well as their effects on the storage stability of emulsions. The results of the isothermal calorimetry titration demonstrated that OSS and CTS were complexed by electrostatic interaction and spontaneous hydrogen bonding driven by enthalpy (ΔH from -3931 to -7983 cal/mol, ΔS from -38.5 to -49.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!