Background: Tumor hypoxia worsens the prognosis of head-and-neck squamous cell carcinoma (HNSCC) patients, and plasma hypoxia markers may be used as biomarkers for radiotherapy personalization. We therefore investigated the role of the hypoxia-associated plasma proteins osteopontin, galectin-3, vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) as surrogate markers for imaging-based tumor hypoxia.

Methods: Serial blood samples of HNSCC patients receiving chemoradiation within a prospective trial were analyzed for osteopontin, galectin-3, VEGF and CTGF concentrations. Tumor hypoxia was quantified in treatment weeks 0, 2 and 5 using [F]FMISO PET/CT. The association between PET-defined hypoxia and the plasma markers was determined using Pearson's correlation analyses. Receiver-operating characteristic analyses were conducted to reveal the diagnostic value of the hypoxia markers.

Results: Baseline osteopontin (r = 0.579,  < 0.01) and galectin-3 (r = 0.429,  < 0.05) correlated with the hypoxic subvolume (HSV) prior to radiotherapy, whereas VEGF (r = 0.196,  0.36) and CTGF (r = 0.314,  0.12) showed no association. Patients with an HSV > 1 mL in week 2 exhibited increased VEGF ( < 0.05) and CTGF ( < 0.05) levels in week 5. Pretherapeutic osteopontin levels were higher in patients exhibiting residual hypoxia at the end of treatment (104.7 vs. 60.8 ng/mL < 0.05) and could therefore predict residual hypoxia (AUC = 0.821, 95% CI 0.604-1.000,  < 0.05).

Conclusion: In this exploratory analysis, osteopontin correlated with the initial HSV and with residual tumor hypoxia; therefore, there may be a rationale to study hypoxic modification based on osteopontin levels. However, as plasma hypoxia markers do not correspond to any spatial information of tumor hypoxia, they have limitations regarding the replacement of [F]FMISO PET-based focal treatments. The results need to be validated in larger patient cohorts to draw definitive conclusions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881198PMC
http://dx.doi.org/10.1016/j.ctro.2022.02.008DOI Listing

Publication Analysis

Top Keywords

plasma hypoxia
8
hypoxia markers
8
tumor hypoxia
8
hnscc patients
8
osteopontin galectin-3
8
growth factor
8
hypoxia
6
plasma
4
markers
4
markers predicting
4

Similar Publications

The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.

View Article and Find Full Text PDF

Background: Chronic arterial hypertension restructures the vascular architecture of the brain, leading to a series of pathological responses that culminate in cerebral small-vessel disease. Pericytes respond dynamically to vascular challenges; however, how they manifest under the continuous strain of hypertension has not been elucidated.

Methods And Results: In this study, we characterized pericyte behavior alongside hypertensive states in the spontaneously hypertensive stroke-prone rat model, focusing on their phenotypic and metabolic transformation.

View Article and Find Full Text PDF

Tumor necrosis factor-stimulated gene-6 inhibits endoplasmic reticulum stress in the ischemic mouse kidney.

iScience

December 2024

Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS.

View Article and Find Full Text PDF

Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site.

View Article and Find Full Text PDF

NCAM1 modulates the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary hypertension.

Respir Res

December 2024

Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Background: Pulmonary hypertension (PH) is a malignant vascular disease characterized by pulmonary arterial remodeling. Neural cell adhesion molecule 1 (NCAM1) is a cell surface glycoprotein that is involved in a variety of diseases, including cardiovascular disease. However, the role of NCAM1 in PH remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!