Single crystal X-ray structural dataset of 1,2,4-dithiazolium tetrafluoroborate.

Data Brief

Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.

Published: April 2022

Herein, we present the crystallographic dataset of 1,2,4-dithiazolium tetrafluoroborate. Single crystal X-ray structural analysis evidences that the 1,2,4-dithiazolium ring is almost planar. The 1,2,4-dithiazolium and tetrafluoroborate ions contribute in hydrogen bonding wherein the N-H·N hydrogen bonding in 1,2,4-dithiazolium dimer forms an eight-membered pseudo ring with the Etter's graph set. The information provided in this data contributes to the understanding of structural chemistry and hydrogen bonding interactions in dithiazole derivatives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861404PMC
http://dx.doi.org/10.1016/j.dib.2022.107924DOI Listing

Publication Analysis

Top Keywords

124-dithiazolium tetrafluoroborate
12
hydrogen bonding
12
single crystal
8
crystal x-ray
8
x-ray structural
8
dataset 124-dithiazolium
8
124-dithiazolium
5
structural dataset
4
tetrafluoroborate crystallographic
4
crystallographic dataset
4

Similar Publications

Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.

View Article and Find Full Text PDF

Open metal sites are crucial in catalysis. We have used a "loose coordination strategy" (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2(iPr2-imy = 1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form = N,N'-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.

View Article and Find Full Text PDF

Ultrasonic-assisted extraction of luteolin from peanut shells using ionic liquid and its molecular mechanism.

Ultrason Sonochem

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China. Electronic address:

This study investigates the potential of ionic liquids (ILs) as sustainable solvents in ultrasonic-assisted extraction (UAE) to efficiently recover luteolin from peanut shells. Among the range of ILs tested, 1-butyl-3-methylimidazolium tetrafluoroborate stood out as the most effective solvent, achieving the highest extraction yield. Single-factor experiments were conducted to analyze the effects of ultrasonic power, extraction time, extraction temperature, IL concentration, and solid-to-liquid ratio on extraction efficiency.

View Article and Find Full Text PDF

Testing mixed metal bimetallic, and monometallic, cryptates for electrocatalytic hydrogen evolution.

Dalton Trans

January 2025

Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

Appropriately designed catalysts help to minimise the energy required to convert the energy-poor feedstock HO into energy-rich molecular H. Herein, two families of pyridazine-based cryptates, mononuclear [MLi](BF) and mixed metal dinuclear [MCuLi](BF) (M = Fe, Co, Cu or Zn; Li is the Schiff base cryptand made by 2 : 3 condensation of tris(2-aminoethyl)amine and 3,6-diformylpyridazine), are investigated as potential electrocatalysts for the hydrogen evolution reaction (HER) in MeCN with acetic acid as the proton source. The synthesis and structures of a new mixed metal cryptate, [ZnCuLi](BF), and the tetrafluoroborate analogue of the previously reported perchlorate salt of the mono-zinc cryptate, [ZnLi](BF)·0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!