Community-level mass treatment with azithromycin has been associated with a mortality benefit in children. However, antibiotic exposures result in disruption of the gut microbiota and repeated exposures may reduce recovery of the gut flora. We conducted a nested cohort study within the framework of a randomized controlled trial to examine associations between mass drug administration (MDA) with azithromycin and the gut microbiota of rural Malawian children aged between 1 and 59 months. Fecal samples were collected from the children at baseline and 6 months after two or four biannual rounds of azithromycin treatment. DNA was extracted from fecal samples and V4-16S rRNA sequencing used to characterize the gut microbiota. and were the dominant phyla while and were the most prevalent genera. There were no associations between azithromycin treatment and changes in alpha diversity, however, four biannual rounds of treatment were associated with increased abundance of . The lack of significant changes in gut microbiota after four biannual treatments supports the use of mass azithromycin treatment to reduce mortality in children living in low- and middle-income settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885630PMC
http://dx.doi.org/10.3389/fpubh.2022.756318DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
azithromycin treatment
12
malawian children
8
nested cohort
8
cohort study
8
randomized controlled
8
controlled trial
8
fecal samples
8
biannual rounds
8
azithromycin
6

Similar Publications

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The interplay between the intestinal microbiota and metabolites is believed to influence brain function and the pathogenesis of neurodegenerative conditions through the microbe-gut-brain axis. Sika deer antler protein possesses neuroprotective properties; however, the precise mechanism by which it improves AD remains unclear.

View Article and Find Full Text PDF

This study evaluates the therapeutic impact of Fructus aurantii (FA) stir-baked with tartary buckwheat bran (TBB) on functional dyspepsia (FD), employing a reserpine at the dose of 5 mg/kg to rats. FA, a traditional Chinese herbal medicine, is processed with TBB to enhance its gastrointestinal motility benefits. The study's objectives were to assess the impact of this preparation on intestinal flora, SCFA levels, and metabolomic profiles in FD.

View Article and Find Full Text PDF

Fatty acids (FAs) and gut bacteria likely play vital roles in intrahepatic cholestasis of pregnancy (ICP). However, the causal connection between FAs, gut microbiota, and ICP has not yet been confirmed. To investigate the associations of FAs, gut bacteria, and ICP, a Mendelian randomization (MR) analysis with two samples was performed to identify the potential causal relationships between FAs and ICP.

View Article and Find Full Text PDF

Camellia seed oil (CSO), a potential prebiotic agent, can significantly increase the relative abundance of () in mice gut microbiota following oral administration, this study aims to investigate the enhancing effect in vitro. The results showed that after 24-h co-cultivation with 0.5% (v/v) CSO, the growth of increased from 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!