Severe combined immunodeficiencies (SCIDs) correspond to the most severe form of primary immunodeficiency. Allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy are curative treatments, depending on the donor's availability and molecular diagnostics. A partially human leukocyte antigen (HLA)-compatible donor used has been developed for this specific HSCT indication in the absence of a matched donor. However, the CD34+ selected process induces prolonged post-transplant T-cell immunodeficiency. The aim here was to investigate a modeling approach to predict the time course and the extent of CD4+ T-cell immune reconstitution after CD34+ selected transplantation. We performed a Bayesian approach based on the age-related changes in thymic output and the cell proliferation/loss model. For that purpose, we defined specific individual covariates from the data collected from 10 years of clinical practice and then evaluated the model's predicted performances and accuracy. We have shown that this Bayesian modeling approach predicted the time course and extent of CD4+ T-cell immune reconstitution after SCID transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885722PMC
http://dx.doi.org/10.3389/fped.2021.804912DOI Listing

Publication Analysis

Top Keywords

immune reconstitution
12
cd34+ selected
12
bayesian modeling
8
stem cell
8
cell transplantation
8
severe combined
8
modeling approach
8
time course
8
course extent
8
extent cd4+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!