Transient receptor potential channels in multiple myeloma.

Oncol Lett

Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China.

Published: April 2022

Multiple myeloma is the second most commonly diagnosed hematologic malignancy. As an incurable disease, the molecular mechanisms underlying its many aspects remain unclear. Intracellular calcium ion is an essential signaling molecule that modulates malignant cell behavior, and abnormal regulation of cellular calcium homeostasis may promote cancer cell survival and induce drug resistance. Transient receptor potential (TRP) cation channels are a superfamily of non-selective Ca-permeable channels that regulate intracellular calcium signaling and are involved in the regulation of various characteristics of cancer cells. Emerging evidence shows a close connection between TRP channels and multiple myeloma. This review summarizes the roles of TRP channels in multiple myeloma progression, metastasis, bone destruction, and drug resistance. TRPV1 and TRPV2 orchestrate the progression of multiple myeloma, while TRPM7 promotes myeloma cell dissemination and spreading. TRPV2 and TRPV4, that activate osteoclasts, contribute to the development of osteolytic bone disease caused by multiple myeloma. Both TRPV1 inhibition and TRPV2 activation synergize with bortezomib in the chemotherapy of multiple myeloma, and TRPC1 can determine the responsiveness of multiple myeloma to MTI-101, a cyclic beta-hairpin peptide. Antagonizing TRPA1 can alleviate bortezomib-induced painful peripheral neuropathy. Future studies in this field may identify certain TRP channels as markers or therapeutic targets for predicting the prognosis, preventing progression, and improving drug responsiveness in patients with multiple myeloma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848256PMC
http://dx.doi.org/10.3892/ol.2022.13228DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
36
channels multiple
12
trp channels
12
myeloma
10
multiple
9
transient receptor
8
receptor potential
8
intracellular calcium
8
drug resistance
8
channels
6

Similar Publications

Background: Recent advancements in cellular therapies, particularly CAR-T and T cell engaging bispecific antibodies have significantly altered the therapeutic landscape for Multiple Myeloma. There are two U.S.

View Article and Find Full Text PDF

Patients undergoing autologous stem cell transplantation (auto-SCT) face elevated risks of infections. Additionally, patients colonized in the gastrointestinal tract with antibiotic-resistant bacteria (ARB) are at higher risk of infection with ARB and other infections. Therefore, patients colonized with ARB before auto-SCT should present with an exceptionally high incidence of infections.

View Article and Find Full Text PDF

Antisense oligonucleotides-based approaches for the treatment of multiple myeloma.

Int J Biol Macromol

December 2024

Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:

Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.

View Article and Find Full Text PDF

Genetic architecture of Multiple Myeloma and its prognostic implications - An updated review.

Malays J Pathol

December 2024

Universiti Sains Malaysia, School of Medical Sciences, Human Genome Centre, Health Campus, Kelantan, Malaysia.

Multiple myeloma (MM), a clonal B-cell neoplasia, is an incurable and heterogeneous disease where survival ranges from a few months to more than 10 years. The clinical heterogeneity of MM arises from multiple genomic events that result in tumour development and progression. Recurring genomic abnormalities including cytogenetic abnormalities, gene mutations and abnormal gene expression profiles in myeloma cells have a strong prognostic power.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!