Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we perform simulations to demonstrate neural oscillations in a single silicon nanowire neuron device comprising a gated p-n-p-n diode structure with no external bias lines. The neuron device emulates a biological neuron using interlinked positive and negative feedback loops, enabling neural oscillations with a high firing frequency of ~ 8 MHz and a low energy consumption of ~ 4.5 × 10 J. The neuron device provides a high integration density and low energy consumption for neuromorphic hardware. The periodic and aperiodic patterns of the neural oscillations depend on the amplitudes of the analog and digital input signals. Furthermore, the device characteristics, energy band diagram, and leaky integrate-and-fire operation of the neuron device are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894366 | PMC |
http://dx.doi.org/10.1038/s41598-022-07374-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!