A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomic and proteomic analyses uncover the drought adaption landscape of Phoebe zhennan. | LitMetric

Transcriptomic and proteomic analyses uncover the drought adaption landscape of Phoebe zhennan.

BMC Plant Biol

Institute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China.

Published: March 2022

Background: Phoebe zhennan S.Lee (nanmu) is listed as a threatened tree species in China, whose growth and development, especially during the seedling stage, can be severely limited by drought. Previous studies on nanmu responses to drought stress involved physiological and biochemical analyses, while the molecular mechanisms remained unclear. Therefore, it is of great significance to carry out molecular biology research on the drought resistance of nanmu and reveal the genetic background and molecular regulation mechanism of nanmu drought resistance.

Results: Drought stress enhanced the soluble sugar (SS), free proline(PRO), superoxide anion (O2·-), and hydrogen peroxide (HO) contents as well as the peroxidase (POD) and monodehydroascorbate reductase (MDHAR) activities of nanmu. However, glutathione S-transferase (GST) activity was sensitive to drought stress. Further transcriptomic and proteomic analyses revealed the abundant members of the differentially expressed genes(DEGs) and differentially expressed proteins(DEPs) that were related to phenylpropanoid and flavonoid biosynthesis, hormone biosynthesis and signal transduction, chlorophyll metabolism, photosynthesis, and oxidation-reduction reaction, which suggested their involvement in the drought response of nanmu. These enhanced the osmotic regulation, detoxification, and enzyme-induced and non-enzyme-induced antioxidant ability of nanmu. Moreover, 52% (447/867) of proteins that were up-regulated and 34% (307/892) down-regulated ones were attributed to the increase and decrease of transcription abundance. Transcript up (T) and protein up (P) groups had 447 overlaps, while transcript down (T) and protein down (P) groups had 307 overlaps, accounting for 54% of up and 35% of down-regulated proteins. The lack of overlap between DEGs and DEPs also suggested that post-transcriptional regulation has a critical role in nanmu response to drought.

Conclusions: Our research results provide significant insights into the regulatory mechanisms of drought stress in nanmu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892755PMC
http://dx.doi.org/10.1186/s12870-022-03474-3DOI Listing

Publication Analysis

Top Keywords

drought stress
16
drought
9
nanmu
9
transcriptomic proteomic
8
proteomic analyses
8
phoebe zhennan
8
differentially expressed
8
transcript protein
8
protein groups
8
analyses uncover
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!