Through a meta-analysis, Mupepele et al. (BMC Ecol Evol 21:1-193, 2021) assessed the effects of European agroforestry systems on biodiversity, estimated by species richness or species diversity. They showed that the effects of silvoarable and silvopastoral systems depend on the systems they are compared to and the taxa studied. Further, they found that only silvoarable systems increased species richness or diversity, compared to cropland. The authors conclude that agroforestry systems have weak effects on biodiversity and that landscape context or land-use history are probably more important than the practice of agroforestry in itself. However, we draw attention to important shortcomings in this meta-analysis, which downplay the potential of agroforestry for biodiversity conservation in agricultural landscapes. We hope that the meta-analysis by Mupepele et al. (BMC Ecol Evol 21:1-193, 2021), and our comments, will contribute to improving the quality of research on agroforestry systems and biodiversity conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896113PMC
http://dx.doi.org/10.1186/s12862-022-01977-zDOI Listing

Publication Analysis

Top Keywords

agroforestry systems
16
systems biodiversity
12
biodiversity conservation
12
meta-analysis mupepele
8
mupepele bmc
8
bmc ecol
8
ecol evol
8
evol 211-193
8
211-193 2021
8
species richness
8

Similar Publications

From forests to farming: identification of photosynthetic limitations in breadfruit across diverse environments.

Tree Physiol

January 2025

Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, Honolulu, Hawai'i, USA.

Breadfruit (Artocarpus altilis) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes.

View Article and Find Full Text PDF

To address food and nutrition security in the face of burgeoning global populations and erratic climatic conditions there is a need to include nutrient dense, climatic resilient but neglected indigenous fruit trees in agrifood systems. Here we present the draft genome sequence of Kei Apple, Dovyalis afra, a neglected indigenous African fruit tree with untapped potential to contribute to nutrient security and improved livelihoods. Our long-read-based genome assembly comprises 440 Mbp sequence across 1190 contigs with a N50 and L50 of 13.

View Article and Find Full Text PDF

Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.

View Article and Find Full Text PDF

Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.

View Article and Find Full Text PDF

Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!