Through a meta-analysis, Mupepele et al. (BMC Ecol Evol 21:1-193, 2021) assessed the effects of European agroforestry systems on biodiversity, estimated by species richness or species diversity. They showed that the effects of silvoarable and silvopastoral systems depend on the systems they are compared to and the taxa studied. Further, they found that only silvoarable systems increased species richness or diversity, compared to cropland. The authors conclude that agroforestry systems have weak effects on biodiversity and that landscape context or land-use history are probably more important than the practice of agroforestry in itself. However, we draw attention to important shortcomings in this meta-analysis, which downplay the potential of agroforestry for biodiversity conservation in agricultural landscapes. We hope that the meta-analysis by Mupepele et al. (BMC Ecol Evol 21:1-193, 2021), and our comments, will contribute to improving the quality of research on agroforestry systems and biodiversity conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896113 | PMC |
http://dx.doi.org/10.1186/s12862-022-01977-z | DOI Listing |
Tree Physiol
January 2025
Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, Honolulu, Hawai'i, USA.
Breadfruit (Artocarpus altilis) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes.
View Article and Find Full Text PDFSci Data
January 2025
International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya.
To address food and nutrition security in the face of burgeoning global populations and erratic climatic conditions there is a need to include nutrient dense, climatic resilient but neglected indigenous fruit trees in agrifood systems. Here we present the draft genome sequence of Kei Apple, Dovyalis afra, a neglected indigenous African fruit tree with untapped potential to contribute to nutrient security and improved livelihoods. Our long-read-based genome assembly comprises 440 Mbp sequence across 1190 contigs with a N50 and L50 of 13.
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Berlin, Germany.
Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.
View Article and Find Full Text PDFSci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!