Gray matter volume reduction in the emotional brain networks in adults with anosmia.

J Neurosci Res

Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea.

Published: June 2022

Loss of olfaction, or anosmia, frequently accompanies emotional dysfunctions, partly due to the overlapping brain regions between the olfactory and emotional processing centers. Here, we investigated whether anosmia was associated with gray matter volume alterations at a network level, and whether these alterations were related to the olfactory-specific quality of life (QOL) and depressive symptoms. Structural brain magnetic resonance imaging was acquired in 22 individuals with postinfectious or idiopathic anosmia (the anosmia group) and 30 age- and sex-matched controls (the control group). Using independent component analysis on the gray matter volumes, we identified 10 morphometric networks. The gray matter volumes of these networks were compared between the two groups. Olfactory-specific QOL and depressive symptoms were assessed by self-report questionnaires and clinician-administered interviews, respectively. The anosmia group showed lower gray matter volumes in the hippocampus-amygdala and the precuneus networks, relative to the control group. Lower gray matter volumes in the hippocampus-amygdala network were also linearly associated with lower olfactory-specific QOL and higher depressive symptom scores. These findings suggest a close relationship between anosmia and gray matter volume alterations in the emotional brain networks, albeit without determined causal relations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.25037DOI Listing

Publication Analysis

Top Keywords

gray matter
28
matter volumes
16
matter volume
12
emotional brain
8
brain networks
8
volume alterations
8
qol depressive
8
depressive symptoms
8
anosmia group
8
control group
8

Similar Publications

Background: Loneliness has been linked to cognitive decline and an elevated risk of Alzheimer's disease (AD). Previous studies measured loneliness at a single point time, which may not accurately capture the longitudinal changes of different loneliness types (e.g.

View Article and Find Full Text PDF

Background: Research heavily suggests that brain-derived neurotrophic factor (BDNF), vital for neuronal growth and plasticity, and cholecystokinin (CCK), a satiety hormone that regulates BDNF levels, are altered in Alzheimer's Disease pathophysiology. Factors such as dysbiosis of gut microbiota and poor food habits may affect CCK and BDNF release and brain function. The objective is to evaluate the effects of dietary habits, gut microbiota, and exercise on BDNF and CCK release in Alzheimer's Disease patients.

View Article and Find Full Text PDF

Background: Marital status is an important but often overlooked sociodemographic factor that could shape cognitive health in late adulthood. Being married is shown to be linked to lower risk of dementia, but less is understood about underlying mechanisms contributing to this relationship, such as brain reserve (BR) and cognitive reserve (CR). Further, less is known about how living arrangement, independent of marital status, is associated with late-life cognition.

View Article and Find Full Text PDF

Dementia Care Practice.

Alzheimers Dement

December 2024

Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.

"Dual Perspectives" integrates multiple MRI scans, creating a nuanced synthesis of grey matter and diffusion-based regional connections. This rendering holds particular significance in the realm of Alzheimer's and dementia research by offering a comprehensive examination of data crucial for understanding these complex neurodegenerative conditions. The inclusion of grey matter provides a detailed insight into the structural composition of the brain.

View Article and Find Full Text PDF

Simultaneous Concentration and T Mapping of Brain Metabolites by Fast Multi-Echo Spectroscopic Imaging.

NMR Biomed

February 2025

MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.

The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!