Uranium, a radionuclide, is a predominant element utilized for speciality requirements in industrial applications, as fuels and catalyst. The radioactive properties and chemical toxicity of uranium causes a major threat to the ecosystem. The hazards associated with Uranium pollution includes the cancer in bones, liver, and lungs. The toxicological properties of Uranium are discussed in detail. Although there are many methods to eliminate those hazards, this research work is aimed to describe the application of bioremediation methods. Bioremediation methods involve elimination of the hazards of uranium, by transforming into low oxidation form using natural microbes and plants. This study deeply elucidates the methods as bioleaching, biosorption, bioreduction and phytoremediation. Bioleaching process involves bio-oxidation of tetravalent uranium when it gets in contact with acidophilic metal bacterial complex to obtain leach liquor. In biosorption, chitin/chitosan derived sorbents act as chelators and binds with uranium by electrostatic attraction. Bio reduction employs a bacterial transformation into enzymes which immobilize and reduce uranium. Phytoremediation includes phytoextraction and phytotranslocation of uranium through xylems from soil to roots and shoots of plants. The highest uranium removal and uptake reported using the different methods are listed as follows: bioleaching (100% uranium recovery), biosorption (167 g kg uranium uptake), bioreduction (98.9% uranium recovery), and phytoremediation (49,639 mg kg uranium uptake). Among all the techniques mentioned above, bioleaching has been proved to be the most efficient for uranium remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119068 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
Uranium (U), a high-performing, low-emission energy source, is driving sustainable economic growth. Herein, we synthesized two crystalline phases (HPOC-α and β) by an unreported amidoxime organic cage used for uranium capture. The revealed crystal structures and uranium adsorption test showed that accessible functional groups were essential to uranyl ions sorption.
View Article and Find Full Text PDFSci Rep
January 2025
Los Alamos National Laboratory, Los Alamos, NM, 87544, USA.
Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore 641032, India.
This study investigates groundwater uranium contamination and radiological risks in a part of Pambar River basin, South India, a region with significant geogenic radiation influenced by carbonatite rock formations. Uranium concentrations ranged from 5.8 to 240.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, University of Manchester, Manchester, UK.
Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.
Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!