Eosinophilic Esophagitis (EoE) is an antigen-triggered inflammatory condition of the esophageal lining characterized by eosinophilic infiltration. EoE is associated with significant remodeling, and although this remodeling is reversed by current treatment regimens, symptoms of EoE and associated remodeling reappear upon cessation of therapies. We hypothesized that structural remodeling of cell-cell adhesion is a key factor in the pathogenesis of EoE and that epithelial to mesenchymal transition (EMT) was a viable molecular process to lead to this remodeling. Endoscopically obtained biopsy samples from 18 EoE and 18 control pediatric patients were evaluated by transmission electron microscopy to measure intercellular spaces (IS) between cells. Biopsy samples from all groups were analyzed for cellular levels of cell-cell adhesion proteins: E-cadherin, zonula occludens associated protein-1 (ZO-1), and N-cadherin. We also analyzed for cellular levels and localization two of transcription factors, Twist1 and β-catenin, that are associated with promoting EMT. The IS was significantly increased in the EoE group compared to the control. We observed a significant decrease in E-cadherin and ZO-1 levels and a concomitant increase in N-cadherin levels in EoE samples compared to control. Further, while there was no significant change in cellular levels of β-catenin, we observed an altered localization of the protein from the cell membrane in control tissue to a nuclear/perinuclear localization in EoE. We observed higher levels of the transcription factor Twist1 in the EoE group compared to normal which was localized mainly at the nucleus. Our results suggest that the integrity of normally sealed esophageal epithelia is compromised in the EoE patients compared to control subjects, and this is due to alterations in the expression of cell adhesion molecules at the esophageal epithelium. Our data also suggest that EMT, potentially regulated by transcription factors β-catenin and Twist1, may be responsible for the molecular alteration which leads to the remodeling of esophageal epithelia in EoE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893662PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264622PLOS

Publication Analysis

Top Keywords

cellular levels
12
compared control
12
eoe
11
eosinophilic esophagitis
8
eoe associated
8
associated remodeling
8
cell-cell adhesion
8
biopsy samples
8
analyzed cellular
8
transcription factors
8

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Purpose: To report a case of biopsy-proven sarcoidosis in a patient with panuveitis and a positive interferon-gamma release assay (IGRA) from a non-endemic tuberculosis (TB) country.

Methods: Case report.

Results: A 26-year-old male from the United Arab Emirates (UAE) presented with granulomatous panuveitis characterized by mutton-fat keratic precipitates, anterior chamber and vitreous cells, and retinal vasculitis.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.

Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!