Apoptotic cell death within the brain represents a significant contributing factor to impaired post-traumatic tissue function and poor clinical outcome after traumatic brain injury. After irradiation with light in the wavelength range of 600-1200 nm (photobiomodulation), previous investigations have reported a reduction in apoptosis in various tissues. This study investigates the effect of 660 nm photobiomodulation on organotypic slice cultured hippocampal tissue of rats, examining the effect on apoptotic cell loss. Tissue optical Raman spectroscopic changes were evaluated. A significantly higher proportion of apoptotic cells 62.8±12.2% vs 48.6±13.7% (P<0.0001) per region were observed in the control group compared with the photobiomodulation group. After photobiomodulation, Raman spectroscopic observations demonstrated 1440/1660 cm-1 spectral shift. Photobiomodulation has the potential for therapeutic utility, reducing cell loss to apoptosis in injured neurological tissue, as demonstrated in this in vitro model. A clear Raman spectroscopic signal was observed after apparent optimal irradiation, potentially integrable into therapeutic light delivery apparatus for real-time dose metering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893683 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264533 | PLOS |
Discov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza, Egypt.
Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal 462033, Madhya Pradesh, India.
Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds -) such that a potential therapeutic could be extracted out from the series.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Milk is a multifaceted biofluid that is essential for infant nutrition and development, yet its cellular and bioactive components, particularly maternal milk cells, remain understudied. Early research on milk cells indicated that they cross the infant's intestinal barrier and accumulate within systemic organs. However, due to the absence of modern analytical techniques, these studies were limited in scope and mechanistic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!