The Apparent Diffusion Coefficient (ADC) is considered an importantimaging biomarker contributing to the assessment of tissue microstructure and pathophy- siology. It is calculated from Diffusion-Weighted Magnetic Resonance Imaging (DWI) by means of a diffusion model, usually without considering any motion during image acquisition. We propose a method to improve the computation of the ADC by coping jointly with both motion artifacts in whole-body DWI (through group-wise registration) and possible instrumental noise in the diffusion model. The proposed deformable registration method yielded on average the lowest ADC reconstruction error on data with simulated motion and diffusion. Moreover, our approach was applied on whole-body diffusion weighted images obtained with five different b-values from a cohort of 38 patients with histologically confirmed lymphomas of three different types (Hodgkin, diffuse large B-cell lymphoma and follicular lymphoma). Evaluation on the real data showed that ADC-based features, extracted using our joint optimization approach classified lymphomas with an accuracy of approximately 78.6% (yielding a 11% increase in respect to the standard features extracted from unregistered diffusion-weighted images). Furthermore, the correlation between diffusion characteristics and histopathological findings was higher than any other previous approach of ADC computation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3156009DOI Listing

Publication Analysis

Top Keywords

diffusion model
8
features extracted
8
diffusion
6
adc
5
joint deformable
4
deformable image
4
image registration
4
registration adc
4
adc map
4
map regularization
4

Similar Publications

In this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.

View Article and Find Full Text PDF

Intracellular α-synuclein assemblies are sufficient to alter nanoscale diffusion in the striatal extracellular space.

NPJ Parkinsons Dis

December 2024

Univ. Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.

α-synucleinopathies progression involves the spread of α-synuclein aggregates through the extracellular space (ECS). Single-particle tracking studies showed that α-synuclein-induced neurodegeneration increases ECS molecular diffusivity. To disentangle the consequences of neuronal loss versus α-synuclein-positive intracellular assemblies formation, we performed near-infrared single-particle tracking to characterise ECS rheology in the striatum of mouse models of α-synucleinopathies.

View Article and Find Full Text PDF

Influence of Organ-Specific Extranodal Involvement on Survival Outcomes in Stage IV Diffuse Large B-Cell Lymphoma.

Cancer Med

January 2025

Lymphoma and Cell Therapy Research Center, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.

Background: The prognostic significance of extranodal sites in stage IV diffuse large B-cell lymphoma (DLBCL) remains uncertain, making it challenging to select appropriate treatment strategies for individual patients. In this study, we aimed to evaluate the influence of different extranodal sites on prognosis in young patients with stage IV DLBCL who achieved complete remission (CR) following initial chemo-immunotherapy and to explore the potential of autologous hematopoietic stem cell transplantation (ASCT) as a consolidation treatment for specific patient subgroups.

Methods: We retrospectively reviewed data from 119 patients with DLBCL aged < 60 years who achieved CR after chemo-immunotherapy between 2008 and 2020.

View Article and Find Full Text PDF

Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.

View Article and Find Full Text PDF

Microstructural mapping of neural pathways in Alzheimer's disease using macrostructure-informed normative tractometry.

Alzheimers Dement

December 2024

Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA.

Introduction: Diffusion-weighted magnetic resonance imaging (dMRI) is sensitive to the microstructural properties of brain tissues and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest without considering the underlying fiber geometry.

Methods: We propose a novel macrostructure-informed normative tractometry (MINT) framework to investigate how white matter (WM) microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!