Identifying drug phenotypic effects, including therapeutic effects and adverse drug reactions (ADRs), is an inseparable part for evaluating the potentiality of new drug candidates (NDCs). However, current computational methods for predicting phenotypic effects of NDCs are mainly based on the overall structure of an NDC or a related target. These approaches often lead to inconsistencies between the structures and functions and limit the prediction space of NDCs. In this study, first, we constructed quantitative associations of substructure-domain, domain-ADR, and domain-ATC (Anatomical Therapeutic Chemical Classification System code) through L1LOG and L1SVM machine learning models. These associations represent relationships between phenotypes (ADRs and ATCs) and local structures of drugs and proteins. Then, based on these established associations, substructure-phenotype relationships were constructed which were utilized to quantify drug-phenotype relationships. Thus, this approach could achieve high-throughput and effective evaluations of the druggability of NDCs by referring to the established substructure-phenotype relationships and structural information of NDCs without additional prior knowledge. Using this computational pipeline, 83,205 drug-ATC relationships (including 1,479 drugs and 178 ATCs) and 306,421 drug-ADR relationships (including 1,752 drugs and 454 ADRs) were predicted in total. The prediction results were validated at four levels: five-fold cross validation, public databases, literature, and molecular docking. Furthermore, three case studies demonstrated the feasibility of our method. 79 ATCs and 269 ADRs were predicted to be related to Maraviroc, an approved drug, including the existing antiviral effect in clinical use. Additionally, we also found risk substructures of severe ADRs, for example, SUB215 (>= 1, saturated or only aromatic carbon ring size 7) can result in shock. And we analyzed the mechanism of action (MOA) of interested drugs based on the established drug-substructure-domain-protein associations. In a word, this approach through establishing drug-substructure-phenotype relationships can achieve quantitative prediction of phenotypes for a given NDC or drug without any prior knowledge except its structure information. Using that way, we can directly obtain the relationships between substructure and phenotype of a compound, which is more convenient to analyze the phenotypic mechanism of drugs and accelerate the process of rational drug design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2022.3155453 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!