The prospect of controlling the electronic properties of materials via the vacuum fields of cavity electromagnetic resonators is emerging as one of the frontiers of condensed matter physics. We found that the enhancement of vacuum field fluctuations in subwavelength split-ring resonators strongly affects one of the most paradigmatic quantum protectorates, the quantum Hall electron transport in high-mobility two-dimensional electron gases. The observed breakdown of the topological protection of the integer quantum Hall effect is interpreted in terms of a long-range cavity-mediated electron hopping where the anti-resonant terms of the light-matter coupling Hamiltonian develop into a finite resistivity induced by the vacuum fluctuations. Our experimental platform can be used for any two-dimensional material and provides a route to manipulate electron phases in matter by means of vacuum-field engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.abl5818 | DOI Listing |
Eur Phys J C Part Fields
January 2025
A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Systems Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA.
Methods are needed to mitigate microplastic (MP) pollution to minimize their harm to the environment and human health. Given the ability of polypeptides to adsorb strongly to materials of micro- or nanometer size, plastic-binding peptides (PBPs) could help create bio-based tools for detecting, filtering, or degrading MNP pollution. However, the development of such tools is prevented by the lack of PBPs.
View Article and Find Full Text PDFNat Mater
January 2025
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!