In this work, we reveal the coordination of copper ions absorbed by a series of covalent organic frameworks. The frameworks were synthesized through the nucleophilic substitution of either cyanuric chloride or phosphonitrilic chloride trimer by 4,4'-bipyridine, and they were utilized as absorbers for the removal of copper ions from aqueous solutions. The exfoliated counterpart of the layered network was compared to the bulk materials in terms of the copper retention capacity and efficiency. The ion absorption capacity of copper ranged from 100 to 290 mg/g depending on the morphology and chemical structure of the framework. As evidenced by the SEM and XRD analysis, the copper absorption induced certain morphological changes in the networks. EPR spectroscopy revealed the key finding of this study: the trigonal bipyramidal configuration of the copper ions in their divalent state, coordinated with the nitrogen of the core units, 4,4'-bipyridine, and chlorine ions. The analysis of the thoroughgoing experiments bridges the gap between coordination molecular chemistry and the field of covalent organic frameworks. EPR explores how the unique trigonal bipyramidal coordination could be suppressed in the end by the environment and, more specifically, by the addition of glycerol to the aqueous dispersions of the covalent organic frameworks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c02910 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.
Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
Diatomic catalysts enhance photocatalytic CO reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO photoreduction.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.
View Article and Find Full Text PDFMetabolites
December 2024
Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge.
View Article and Find Full Text PDFGels
December 2024
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!