A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tautomers and Rotamers of Curcumin: A Combined UV Spectroscopy, High-Performance Liquid Chromatography, Ion Mobility Mass Spectrometry, and Electronic Structure Theory Study. | LitMetric

The structures of tautomers and rotameric forms of curcumin, the bioactive compound present in spice plant turmeric, have been investigated using ion mobility mass spectrometry (IMMS) in conjunction with high-performance liquid chromatography (HPLC) and UV-visible spectroscopy. Two tautomeric forms of this β-diketone compound, keto-enol and diketo, have been chromatographically separated, and the electronic absorption spectra for these two tautomeric forms in methanol solution have been recorded separately for the first time. The molecular identity of the HPLC-separated solution fractions is established unambiguously by recording the mass and fragmentation spectra simultaneously. The ion mobility spectrum for the deprotonated curcumin anion, [Cur-H], corresponding to the diketo tautomer, displays only one peak (P), and the collision cross-section (CCS) value is measured to be 185.9 Å. However, the ion mobility spectrum corresponding to the HPLC-separated keto-enol tautomer shows three distinctly separated peaks, P, Q, and R, with CCS values of 185.9, 194.8, and 203.4 Å, respectively, whereby peak R appears to be the most intense one, followed by peaks P and Q. The theoretically calculated CCS values of different isomers of [Cur-H], optimized by electronic structure theory methods, display satisfactory correlation with the experimentally observed values, corroborating our assignments. The spectral attributes also indicate the occurrence of structural rearrangements in the electrospray ionization process. With the aid of the electronic structure calculation, low-energy pathways for the occurrence of the structural isomerization to surpass the energy barrier are suggested, which are consistent with the assignments of the peaks observed in the IM spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.1c08612DOI Listing

Publication Analysis

Top Keywords

ion mobility
16
electronic structure
12
high-performance liquid
8
liquid chromatography
8
mobility mass
8
mass spectrometry
8
structure theory
8
tautomeric forms
8
mobility spectrum
8
ccs values
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!