Propofol, a general anesthetic administered intravenously, may cause pain at the injection site. The pain is in part due to irritation of vascular endothelial cells. We here investigated the effects of propofol on Ca2+ transport and pain mediator release in human umbilical vein endothelial cells (EA.hy926). Propofol mobilized Ca2+ from cyclopiazonic acid (CPA)-dischargeable pool but did not cause Ca2+ release from the lysosomal Ca2+ stores. Propofol-elicited Ca2+ release was suppressed by 100 μM ryanodine, suggesting the participation of ryanodine receptor channels. Propofol did not affect ATP-triggered Ca2+ release but abolished the Ca2+ influx triggered by ATP; in addition, propofol also suppressed store-operated Ca2+ entry elicited by CPA. Ca2+ clearance during CPA-induced Ca2+ discharge was unaffected by a low Na+ (50 mM) extracellular solution, but strongly suppressed by 5 mM La3+ (an inhibitor of plasmalemmal Ca2+ pump), suggesting Ca2+ extrusion was predominantly through the plasmalemmal Ca2+ pump. Propofol mimicked the effect of La3+ in suppressing Ca2+ clearance. Propofol also stimulated release of pain mediators, namely, reactive oxygen species and bradykinin. Our data suggest propofol elicited Ca2+ release and repressed Ca2+ clearance, causing a sustained cytosolic [Ca2+]i elevation. The latter may cause reactive oxygen species and bradykinin release, resulting in pain.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000001246DOI Listing

Publication Analysis

Top Keywords

ca2+
18
ca2+ release
16
endothelial cells
12
plasmalemmal ca2+
12
ca2+ pump
12
ca2+ clearance
12
propofol
9
ryanodine receptor
8
pump propofol
8
release pain
8

Similar Publications

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.

View Article and Find Full Text PDF

Cobalt-based oxides have attracted significant attention as p-type thermoelectric materials due to their wide operational temperature range. However, their low average figure of merit () value has hindered service performance. A series of cation vacancies as Ca-active sites were introduced into CaCoO (0 ≤ ≤ 0.

View Article and Find Full Text PDF

Interstitial Oxygen-Driven Far-Red/Near-Infrared Emission and Efficiency Enhancement via Heterovalent Cation Substitution in CaWO Phosphors.

Inorg Chem

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Material Science and Engineering, Shandong University, Jinan 250061, P. R. China.

In this work, CaWO (CWO) phosphors were successfully synthesized using a high-temperature solid-state method, exhibiting an anomalous far-red/near-infrared (FR-NIR) emission centered at 685 nm. The origin of this FR-NIR emission is confirmed through Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and heterovalent cationic substitution (Y/Na → Ca). These analyses indicate that interstitial oxygen (O) defects within the lattice are primarily responsible for the FR-NIR emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!