Background: Due to comparatively long measurement times in simultaneous positron emission tomography and magnetic resonance (PET/MR) imaging, patient movement during the measurement can be challenging. This leads to artifacts which have a negative impact on the visual assessment and quantitative validity of the image data and, in the worst case, can lead to misinterpretations. Simultaneous PET/MR systems allow the MR-based registration of movements and enable correction of the PET data. To assess the effectiveness of motion correction methods, it is necessary to carry out measurements on phantoms that are moved in a reproducible way. This study explores the possibility of using such a phantom-based setup to evaluate motion correction strategies in PET/MR of the human head.
Method: An MR-compatible robotic system was used to generate rigid movements of a head-like phantom. Different tools, either from the manufacturer or open-source software, were used to estimate and correct for motion based on the PET data itself (SIRF with SPM and NiftyReg) and MR data acquired simultaneously (e.g. MCLFIRT, BrainCompass). Different motion estimates were compared using data acquired during robot-induced motion. The effectiveness of motion correction of PET data was evaluated by determining the segmented volume of an activity-filled flask inside the phantom. In addition, the segmented volume was used to determine the centre-of-mass and the change in maximum activity concentration.
Results: The results showed a volume increase between 2.7 and 36.3% could be induced by the experimental setup depending on the motion pattern. Both, BrainCompass and MCFLIRT, produced corrected PET images, by reducing the volume increase to 0.7-4.7% (BrainCompass) and to -2.8-0.4% (MCFLIRT). The same was observed for example for the centre-of-mass, where the results show that MCFLIRT (0.2-0.6 mm after motion correction) had a smaller deviation from the reference position than BrainCompass (0.5-1.8 mm) for all displacements.
Conclusions: The experimental setup is suitable for the reproducible generation of movement patterns. Using open-source software for motion correction is a viable alternative to the vendor-provided motion-correction software.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894542 | PMC |
http://dx.doi.org/10.1186/s40658-022-00442-6 | DOI Listing |
J Clin Orthop Trauma
January 2025
St John of God Subiaco and Midland Hospitals, Subiaco, 6008, WA, Australia.
Introduction: Total knee arthroplasty (TKA) in severe varus deformity still remains a challenge. Alternative alignment TKA aims to improve outcomes and satisfaction. The purpose of this study is to report on the outcomes of a functionally aligned TKA in severe varus deformity.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, China.
Background: Congenital radioulnar synostosis (CRUS) is a rare upper limb deformity characterized by impaired rotational movement of the forearm. Rotational osteotomy is a commonly employed surgical procedure for treatment. This study aimed to analyze its surgical efficacy in treating CRUS in children.
View Article and Find Full Text PDFAdv Radiat Oncol
February 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah.
Purpose: To evaluate the image quality of an ultrafast cone-beam computed tomography (CBCT) system-Varian HyperSight.
Methods And Materials: In this evaluation, 5 studies were performed to assess the image quality of HyperSight CBCT. First, a HyperSight CBCT image quality evaluation was performed and compared with Siemens simulation-CT and Varian TrueBeam CBCT.
J Shoulder Elbow Surg
December 2024
Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, CA, USA. Electronic address:
Background: There is a relative paucity of studies examining how the superior capsule reconstruction (SCR) may alter the kinematics of the glenohumeral joint capsule itself, specifically with respect to rotation and translation in the anterior-posterior and superior-inferior planes. This then raises the possibility that the SCR may be having unintended consequences on glenohumeral kinematics. The purpose of this study was to quantify the glenohumeral joint kinematics following Fascia Lata SCR (FL-SCR).
View Article and Find Full Text PDFAJNR Am J Neuroradiol
December 2024
From the Department of Diagnostic Medicine, Dell Medical School at The University of Texas at Austin, Austin, TX, USA (C.Y.H.), Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA (N.S., G.A., Q.W., P.C., M.A., J.G.P., B.R.G., P.R.T., G.D.H.), Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA (E.C., P.R.T., S.A.P.), Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA (P.R.T., S.A.P.), and the Department of Radiology at Texas Children's Hospital, Houston, TX, USA (S.F.K.).
Background And Purpose: There are multiple MRI perfusion techniques, with limited available literature comparing these techniques in the grading of pediatric brain tumors. For efficiency and limiting scan time, ideally only one MRI perfusion technique can be used in initial imaging. We compared DSC, DCE, and IVIM along with ADC from DWI for differentiating high versus low grade pediatric brain tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!