In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.1c00852 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
This study introduces a sustainable approach for enhancing the fire retardancy and smoke suppression of poly(lactic acid) (PLA) composites, contributing to addressing one of the major challenges in biocomposites that limits their application in various engineering fields, as automotive and construction sectors. Flax fibers (FF) were surface functionalized with a novel organic-inorganic hybrid flame retardant (FR), offering a sustainable bioinspired approach that mitigates potential mechanical properties impairment and FR leaching, which can cause environmental concerns and reduced composite durability. The process involves a three-step coating procedure.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries.
View Article and Find Full Text PDFIn solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) H-H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz).
View Article and Find Full Text PDFMol Pharm
January 2025
Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.
There is still an insufficient understanding of how the characteristics of protein drugs are maintained in the solid state of lyophilizates, including aspects such as protein distances, local environment, and structural preservation. To this end, we evaluated protein folding and the molecules' nearest environment by electron paramagnetic resonance (EPR) spectroscopy. Double electron-electron resonance (DEER) probe distances of up to approximately 200 Å and is suitable to investigate protein folding, local concentration, and aggregation, whereas electron spin echo envelope modulation (ESEEM) allows the study of the near environment within approximately 10 Å of the spin label.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!