Infections caused by the Zika virus (ZIKV) have detrimental effects on human health, in particular on infants. As no potent drug or vaccine is available to date to contain this viral disease, it is necessary to design inhibitors that can target the NS2B-NS3 protease of the ZIKV, which is mainly responsible for the proliferation of the virus inside the host cells . Here, molecular dynamics (MD) simulation and molecular mechanics energies combined with the generalized Born and surface area continuum solvation model (MM/GBSA) are used to understand the binding modes and stabilities of R, KR, KKR, WKR, WKKR, YKKR, and FKKR peptide inhibitors bound to the NS3-NS2B protease. The results are compared with the corresponding results obtained for covalent (compound ) and non-covalent (compound ) peptidomimetic inhibitors . It is revealed that peptide inhibitors can bind strongly with the ZIKV protease with the ΔG ranging from -12 kcal/mol to -73 kcal/mol. Among these peptides, YKKR is found to make the most stable complex with the protease and fully occupy the electrostatically active substrate binding site. Hence, it would inhibit the protease activities of ZIKV strongly. The residue-wise decomposition of ΔG indicates that Asp75, Asp129, Tyr130, Ser135, Gly151, Asn152, Glys153, and Tyr161 of NS3 and Ser81, Asp83, and Phe84 of NS2B play a prominent role in the inhibitor binding. Therefore, any future design of inhibitors should be aimed to target these residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2045223 | DOI Listing |
J Med Chem
January 2025
Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
The prevalence of drug-resistant bacteria is a major challenge throughout the world, especially with respect to Gram-negative bacteria, such as drug-resistant , which are regarded as the greatest bacterial threat to human health by the World Health Organization (WHO). In this work, 1,3,4-thiadiazole was introduced into the main skeleton of the classical peptidomimetic peptide deformylase (PDF) inhibitor in pursuit of highly efficient and broad-spectrum bacteriostatic drugs. Upon detailed structure-activity relationship study, PDF inhibitors that possess satisfactory activity against both Gram-positive and Gram-negative bacteria as well as a lower potential for methemoglobin toxicity were screened out.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.
SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India; Department of Pharmaceutical Chemistry, R R College of Pharmacy, Bengaluru 560 090, Karnataka, India. Electronic address:
The landscape of cancer treatment has been transformed by the emergence of immunotherapy, especially through the use of antibodies that target the PD-1/PD-L1 pathway. Recently, there has been a notable increase in interest surrounding immune checkpoint inhibitors for cancer therapy. While antibody-based approaches have drawbacks like high costs and prolonged activity, the approval of monoclonal antibodies such as pembrolizumab and nivolumab has paved the way for a range of alternative therapies, including peptides, peptidomimetics, and small-molecule inhibitors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zurich, Switzerland.
Radical S-adenosyl methionine enzymes catalyze a diverse repertoire of post-translational modifications in protein and peptide substrates. Among these, an exceptional and mechanistically obscure example is the installation of α-keto-β-amino acid residues by formal excision of a tyrosine-derived tyramine unit. The responsible spliceases are key maturases in a widespread family of natural products termed spliceotides that comprise potent protease inhibitors, with the installed β-residues being crucial for bioactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!