A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Best Practices in the Characterization of MOF@MSN Composites. | LitMetric

Best Practices in the Characterization of MOF@MSN Composites.

Inorg Chem

Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States.

Published: March 2022

Research on permanently porous nanomaterials has gripped the attention of materials chemists for decades. Mesoporous silica nanoparticles (MSNs) and metal-organic frameworks (MOFs) are two of the most studied classes of materials in this field. Recently, explorations into embedding MOFs within the mesopores of MSNs have aimed to create composites that are greater than the sum of their parts. While initial progress has been promising, it has become clear that the characterization of these MOF@MSN composite materials represents a significant challenge that is often overlooked, leading to an unfortunate ambiguity in the field. The greatest difficulty lies in determining whether the product of a synthesis is simply a physical mixture of the two materials or truly the targeted composite, with MOF exclusively crystallized in the pores or on the surfaces of the MSN. This challenge is aggravated by the dramatically different porosity and composition of the components, often resulting in ambiguous information from common characterization techniques. This Viewpoint will address this challenge by calling attention to the mentioned issues and proposing a standardized approach to characterizing these materials. In particular, the use of powder X-ray diffraction, gas physisorption, and electron microscopy with systematic control experiments and data analysis is outlined. This approach can provide the information needed to clearly validate the architecture of an apparent MOF@MSN composite.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03818DOI Listing

Publication Analysis

Top Keywords

characterization mof@msn
8
mof@msn composite
8
materials
5
best practices
4
practices characterization
4
mof@msn composites
4
composites permanently
4
permanently porous
4
porous nanomaterials
4
nanomaterials gripped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!