Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electric and magnetic fields have enabled both technological applications and fundamental discoveries in the areas of bottom-up material synthesis, dynamic phase transitions, and biophysics of living matter. Electric and magnetic fields are versatile external sources of energy that power the assembly and self-propulsion of colloidal particles. In this Invited Feature Article, we classify the mechanisms by which external fields impact the structure and dynamics in colloidal dispersions and augment their nonequilibrium behavior. The paper is purposely intended to highlight the similarities between electrically and magnetically actuated phenomena, providing a brief treatment of the origin of the two fields to understand the intrinsic analogies and differences. We survey the progress made in the static and dynamic assembly of colloids and the self-propulsion of active particles. Recent reports of assembly-driven propulsion and propulsion-driven assembly have blurred the conceptual boundaries and suggest an evolution in the research of nonequilibrium colloidal materials. We highlight the emergence of colloids powered by external fields as model systems to understand living matter and provide a perspective on future challenges in the area of field-induced colloidal phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928473 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.1c02581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!