Back-of-device interaction is a promising approach to interacting on smartphones. In this paper, we create a back-of-device command and text input technique called BackSwipe, which allows a user to hold a smartphone with one hand, and use the index finger of the same hand to draw a word-gesture anywhere at the back of the smartphone to enter commands and text. To support BackSwipe, we propose a back-of-device word-gesture decoding algorithm which infers the keyboard location from back-of-device gestures, and adjusts the keyboard size to suit the gesture scales; the inferred keyboard is then fed back into the system for decoding. Our user study shows BackSwipe is feasible and a promising input method, especially for command input in the one-hand holding posture: users can enter commands at an average accuracy of 92% with a speed of 5.32 seconds/command. The text entry performance varies across users. The average speed is 9.58 WPM with some users at 18.83 WPM; the average word error rate is 11.04% with some users at 2.85%. Overall, BackSwipe complements the extant smartphone interaction by leveraging the back of the device as a gestural input surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887869PMC
http://dx.doi.org/10.1145/3411764.3445081DOI Listing

Publication Analysis

Top Keywords

back-of-device word-gesture
8
enter commands
8
backswipe
5
backswipe back-of-device
4
word-gesture interaction
4
interaction smartphones
4
back-of-device
4
smartphones back-of-device
4
back-of-device interaction
4
interaction promising
4

Similar Publications

Back-of-device interaction is a promising approach to interacting on smartphones. In this paper, we create a back-of-device command and text input technique called BackSwipe, which allows a user to hold a smartphone with one hand, and use the index finger of the same hand to draw a word-gesture anywhere at the back of the smartphone to enter commands and text. To support BackSwipe, we propose a back-of-device word-gesture decoding algorithm which infers the keyboard location from back-of-device gestures, and adjusts the keyboard size to suit the gesture scales; the inferred keyboard is then fed back into the system for decoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!