Meniscus Regeneration With Multipotent Stromal Cell Therapies.

Front Bioeng Biotechnol

Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

Published: February 2022

Meniscus is a semilunar wedge-shaped structure with fibrocartilaginous tissue, which plays an essential role in preventing the deterioration and degeneration of articular cartilage. Lesions or degenerations of it can lead to the change of biomechanical properties in the joints, which ultimately accelerate the degeneration of articular cartilage. Even with the manual intervention, lesions in the avascular region are difficult to be healed. Recent development in regenerative medicine of multipotent stromal cells (MSCs) has been investigated for the significant therapeutic potential in the repair of meniscal injuries. In this review, we provide a summary of the sources of MSCs involved in repairing and regenerative techniques, as well as the discussion of the avenues to utilizing these cells in MSC therapies. Finally, current progress on biomaterial implants was reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883323PMC
http://dx.doi.org/10.3389/fbioe.2022.796408DOI Listing

Publication Analysis

Top Keywords

multipotent stromal
8
degeneration articular
8
articular cartilage
8
meniscus regeneration
4
regeneration multipotent
4
stromal cell
4
cell therapies
4
therapies meniscus
4
meniscus semilunar
4
semilunar wedge-shaped
4

Similar Publications

Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift.

Bioeng Transl Med

January 2025

Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China.

Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate.

View Article and Find Full Text PDF

In patients with acute leukemia (AL), malignant cells and therapy modify the properties of multipotent mesenchymal stromal cells (MSCs) and their descendants, reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the alterations in MSCs at the onset and after therapy in patients with AL. The study included MSCs obtained from the bone marrow of 78 AL patients (42 AML and 36 ALL) and healthy donors.

View Article and Find Full Text PDF

The present study investigates the influence of nitrosamines and etoposide on mesenchymal stromal cells (MSCs) in a differentiation state- and biological age-dependent manner. The genotoxic effects of the agents on both neonatal and adult stem cell populations after treatment, before, or during the course of differentiation, and the sensitivity of the different MSC types to different concentrations of MNU or etoposide were assessed. Hereby, the multipotent differentiation capacity of MSCs into osteoblasts, adipocytes, and chondrocytes was analyzed.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system's antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells (PBMCs) could stimulate interleukin (IL) production against melanoma cell lines (MCCLs) and help identify therapeutic targets. This study evaluated IL-2, IL-8, and IL-12 expressions in co-culture with MCCL, Ad-MSCs, and PBMCs and assessed the relationship between gene expression, cell viability, and migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!