Drought is one of the most predominant abiotic stresses in this century, leading to a drastic reduction in the yield of rainfed rice ecosystems. Breeding of drought-resilient rice varieties is very much in demand for sustainable rice production in drought-prone rainfed ecology. An experiment was designed under irrigated non-stress and drought-stress situations involving an exotic drought-tolerant landrace (Chao Khaw) and a high-yielding aromatic rice cultivar (Kasturi), and an F derived population of 156 breeding lines was developed at IRRI South Asia Hub, Hyderabad. The objective of the study was to assess the genetic variability, drought tolerance behavior, and identify promising breeding lines for different rice ecologies and drought breeding programs. Restricted maximum likelihood (REML) analysis using the mixed model approach revealed a considerable genetic variation in the population for yield and yield contributing traits in non-stress and drought-stress conditions. We observed very high heritability for all the selected traits under stress 2015 WS (73.8% to 85.3%) and 2016 WS (72.4% to 93.5%) and non-stress 2015 WS (68.2% To 92.9%) and 2016 WS (61.4% to 92.6%) environments, indicating possible selection for grain yield under drought stress and non-stress with the same precision level. None of the secondary traits except harvest index and biomass included in our study showed a positive association with grain yield, indicating indirect selection's ineffectiveness in improving yield under drought. A total of 48 promising breeding lines were found to have a better yield than donor Chao Khaw (up to 38% advantage) and popular drought-tolerant cultivars Shabhagidhan (up to 48% advantage) in stress conditions and recommended for rainfed upland ecology, 34 breeding lines under the well-watered condition suited for rainfed lowland ecology. Overall, the study found 21 common breeding lines that showed their superiority in non-stress and under drought stress situations, fitting best in rainfed lowland ecology with occasional drought occurrence. The large genetic variation found in this population can be exploited further to develop a few forward breeding high-yielding lines with better drought tolerance ability and used as drought donors in drought breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882627 | PMC |
http://dx.doi.org/10.3389/fpls.2022.814774 | DOI Listing |
Mol Plant
January 2025
Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China. Electronic address:
Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period.
View Article and Find Full Text PDFPlant Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.
View Article and Find Full Text PDFViruses
January 2025
Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-3619, USA.
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av. 10, 630090 Novosibirsk, Russia.
Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!