AI Article Synopsis

  • Plant breeding can decrease genetic diversity in plants, which might lead to a less complex rhizosphere microbiome made up of more specialized microbes.
  • A study using 16S rRNA sequencing looked at the bacterial communities in the rhizosphere of different cowpea lines and cultivars to see how breeding impacts these communities.
  • Results showed no major differences in bacterial community structure among the cowpea genotypes, but indicated that African lines had more diverse functions related to nutrient processing compared to modern Brazilian cultivars.

Article Abstract

Plant breeding reduces the genetic diversity of plants and could influence the composition, structure, and diversity of the rhizosphere microbiome, selecting more homogeneous and specialized microbes. In this study, we used 16S rRNA sequencing to assess the bacterial community in the rhizosphere of different lines and modern cowpea cultivars, to investigate the effect of cowpea breeding on bacterial community assembly. Thus, two African lines (IT85F-2687 and IT82D-60) and two Brazilian cultivars (BRS-Guariba and BRS-Tumucumaque) of cowpea were assessed to verify if the generation advance and genetic breeding influence the bacterial community in the rhizosphere. No significant differences were found in the structure, richness, and diversity of bacterial community structure between the rhizosphere of the different cowpea genotypes, and only slight differences were found at the OTU level. The complexity of the co-occurrence network decreased from African lines to Brazilian cultivars. Regarding functional prediction, the core functions were significantly altered according to the genotypes. In general, African lines presented a more abundance of groups related to chemoheterotrophy, while the rhizosphere of the modern cultivars decreased functions related to cellulolysis. This study showed that the genetic breeding process affects the dynamics of the rhizosphere community, decreasing the complexity of interaction in one cultivar. As these cowpea genotypes are genetically related, it could suggest a new hypothesis of how genetic breeding of similar genotypes could influence the rhizosphere microbiome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891268PMC
http://dx.doi.org/10.1038/s41598-022-06860-xDOI Listing

Publication Analysis

Top Keywords

bacterial community
20
community rhizosphere
12
african lines
12
genetic breeding
12
rhizosphere
8
rhizosphere microbiome
8
brazilian cultivars
8
cowpea genotypes
8
cowpea
6
community
6

Similar Publications

Towards fostering a more sustainable food production system in face of the climate change challenge, alternative protein meat-substitute products that are plant-based and free of animal by-products have been gaining attractions from both food manufacturers and consumers. With these so-called plant-based meat analogues (PBMAs) becoming increasingly available at supermarkets, there is very little known about their microbial properties. In this short report, we characterized the bacterial composition of raw plant-based ground meat imitation retail products using 16S rRNA gene amplicon sequencing.

View Article and Find Full Text PDF

Bacterial microbiota was determined in fruit, soil, and irrigation water from blueberry ( spp.) farms located in Cundinamarca, Colombia; Mississippi, United States; and Jalisco, Mexico. Bacterial communities were studied using 16S ribosomal ribonucleic acid (rRNA) gene amplification by targeting the V3-V4 hypervariable region.

View Article and Find Full Text PDF

Antimicrobial resistance pattern of isolated from imported frozen shrimp in Saudi Arabia.

PeerJ

December 2024

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Region, Saudi Arabia.

Contamination of seafood products with multi-drug-resistant (MDR) bacteria is considered to be a potential source for the spread of MDR bacteria in communities. However, little is known about the extent of the contamination of seafood, in particular shrimp, with MDR bacteria in Saudi Arabia. In this study, imported frozen shrimp in retail markets were examined for the antimicrobial susceptibility patterns of .

View Article and Find Full Text PDF

The algal-bacterial granular sludge (ABGS) system was established to explore the effect of 1% salinity conditions, determine the recovery process following salinity disturbance, and probe the impacts of two N-acyl-homoserine lactones (AHLs) on the system. Exposure to 1% salinity led to the reduction of filaments and an increase in TB-EPS contents within the ABGS system. The phosphorus removal performance of the ABGS system severely decreased at 1% salinity did not restore fully during the subsequent recovery stage, demonstrating that salinity stress induced long-term inhibition.

View Article and Find Full Text PDF

Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade.

Environ Pollut

December 2024

Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Electronic address:

The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: