During brain development, neural stem cells (NSCs) undergo multiple fate-switches to generate various neuronal subtypes and glial cells, exhibiting distinct transcriptomic profiles at different stages. However, full-length transcriptomic datasets of NSCs across different neurodevelopmental stages under similar experimental settings are lacking, which is essential for uncovering stage-specific transcriptional and post-transcriptional mechanisms underlying the fate commitment of NSCs. Here, we report the full-length transcriptome of mouse NSCs at five different stages during embryonic and postnatal development. We used fluorescent-activated cell sorting (FACS) to isolate CD133Blbp NSCs from C57BL/6 transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of a Blbp promoter. By integrating short- and long-read full-length RNA-seq, we created a transcriptomic dataset of gene and isoform expression profiles in NSCs at embryonic days 15.5, 17.5, and postnatal days 1.5, 8, and 60. This dataset provides a detailed characterization of full-length transcripts in NSCs at distinct developmental stages, which could be used as a resource for the neuroscience community to study NSC fate determination, neural development, and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891264PMC
http://dx.doi.org/10.1038/s41597-022-01165-0DOI Listing

Publication Analysis

Top Keywords

long-read full-length
8
full-length transcriptome
8
transcriptome mouse
8
neural stem
8
stem cells
8
neurodevelopmental stages
8
nscs
7
full-length
5
stages
5
short-read long-read
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!