Background: Imaging techniques are commonly used to understand disease mechanisms and their biological features in the microenvironment of the cell. Many studies have added to our understanding of the biology of the malaria parasite Plasmodium knowlesi from functional in vitro and imaging analysis using serial block-face scanning electron microscopy (SEM). However, sample fixation and metal coating during SEM analysis can alter the parasite membrane.
Methods: In this study, we used noninvasive diffraction optical tomography (DOT), also known as holotomography, to explore the morphological, biochemical, and mechanical alterations of each stage of P. knowlesi-infected red blood cells (RBCs). Each stage of the parasite was synchronized using Nycodenz and magnetic-activated cell sorting (MACS) for P. knowlesi and P. falciparum, respectively. Holotomography was applied to measure individual three-dimensional refractive index tomograms without metal coating, fixation, or additional dye agent.
Results: Distinct profiles were found on the surface area and hemoglobin content of the two parasites. The surface area of P. knowlesi-infected RBCs showed significant expansion, while P. falciparum-infected RBCs did not show any changes compared to uninfected RBCs. In terms of hemoglobin consumption, P. falciparum tended to consume hemoglobin more than P. knowlesi. The observed profile of P. knowlesi-infected RBCs generally showed similar results to other studies, proving that this technique is unbiased.
Conclusions: The observed profile of the surface area and hemoglobin content of malaria infected-RBCs can potentially be used as a diagnostic parameter to distinguish P. knowlesi and P. falciparum infection. In addition, we showed that holotomography could be used to study each Plasmodium species in greater depth, supporting strategies for the development of diagnostic and treatment strategies for malaria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889714 | PMC |
http://dx.doi.org/10.1186/s13071-022-05182-1 | DOI Listing |
Nanotechnology
January 2025
Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.
Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable porosity, and structural tunability, making them ideal for diverse applications. However, traditional experimental and computational methods have limited scalability and interpretability, hindering effective exploration of MOF structure-property relationships. To address these challenges, we introduce, for the first time, a category-specific topological learning (CSTL), which combines algebraic topology with chemical insights for robust property prediction.
View Article and Find Full Text PDFMass Spectrom (Tokyo)
December 2024
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.
Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!