Carbon nanotube fibers are highly recommended in the field of temperature sensor application owing to their excellent electrical conductivity and thermal conductivity. Here, this work demonstrated the rapid thermal response behaviour of CNT fibers fabricated by floating catalyst CVD method, which was measured by antechnique based on the CNT film electric heater with excellent electrothermal response properties. The temperature dependences of resistance and structure were both explored. Experimental investigation indicates that the reduction in the inter-CNT interspace in the fibers caused by thermally driven actuation was dominantly responsible for the decrease of the fibers resistance during the heating process. Especially, the heated fibers showed 7.2% decrease in electrical resistance at the applied square-wave voltage of 8 V, and good temperature sensitivity (-0.15% °C). The as-prepared CNT fibers also featured a rapid and reversible electrical resistance response behaviour when exposed to external heating stimulation. Additionally, with the increment of temperature and twist-degree, the generated contraction actuation increased, which endowed the CNT fibers with more decrease in electrical resistance. These observations further suggested that the temperature-dependent conduction behavior of the CNT fibers with a high reversibility and repeatability was strongly correlated with their structure response to heat stimulation. As a consequence, the temperature-conduction behavior described here may be applied in other CNT-structured fibers and facilitated the improvement in their temperature-sensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac59e4 | DOI Listing |
Small
December 2024
Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China.
Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.
View Article and Find Full Text PDFHeliyon
May 2024
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran.
J Colloid Interface Sci
March 2025
School of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
MXene exhibits exceptional electrical and electrochemical properties, and is regarded as a promising candidate for future wearable electronic products. However, achieving a balance between flexibility and capacitance performance in MXene-based fiber supercapacitors remains a challenge. Here, MXene/Thermoplastic polyurethane (TPU) composite fibers with good conductivity and tensile properties, were prepared by wet spinning method.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
In this study, we showed that hybrid reinforcement-a combination of nanoparticles and fibers-can provide more effective reinforcement for increasing the recovery stress of a shape memory polymer (SMP) than using either filler individually. We mixed carbon fibers (CF) and carbon nanotubes (CNT) into a poly(lactic acid) (PLA) matrix on a twin-screw extruder and injection molded specimen from the hybrid composite. Subsequently, some of the specimens were subjected to crystallizing heat treatment, while others were kept as molded to study the effects of crystallinity as well.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Architectural Engineering, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea.
Lightweight aggregate concrete can reduce the self-weight of a structure with a low unit weight; however, disadvantages such as reduced strength and brittleness remain. This study evaluated the thermal and mechanical properties of lightweight aggregate cement mortars containing carbon nanotubes (CNTs) and amorphous metallic fibers (AMFs). A thermal property test indicated that the peak temperature of the C1A1 and C1A2 samples using AMFs was approximately 91.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!