Background: Cognitive dysfunction is commonly observed in diabetic patients, yet, the underlying mechanisms are obscure and there are no approved drugs. Skeletal muscle is a key pathological organ in diabetes. Evidence is accumulating that skeletal muscle and brain communication are important for cognitive, and kynurenine (KYN) metabolism is one of the mediators.

Purpose: This study aims to elucidate the mechanism of diabetes-induced cognitive impairment (DCI) from the perspective of skeletal muscle and brain communication, and to explore the therapeutic effect of Zi Shen Wan Fang (ZSWF, a optimized prescription consists of Anemarrhenae Rhizoma (Anemarrhena asphodeloides Bge.), Phellodendri Chinensis Cortex (Phellodendron chinense Schneid.) and Cistanches Herba (Cistanche deserticola Y.C.Ma)), in order to provide new strategies for the prevention and treatment of DCI and preliminarily explore valuable drugs.

Methods: DCI was induced by intraperitoneal injection of streptozotocin (STZ) combined with a high-fat diet and treated with different dosage ZSWF extract by oral gavage for 8 weeks, once a day. Cognitive and skeletal muscle function was assessed, synaptic plasticity and L-type amino acid transporter (LAT1) was measured. KYN and its metabolites as well as metabolic enzymes in the hippocampus, peripheral blood and skeletal muscle were measured. Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) and peroxisome proliferator-activated receptor α (PPARα) were measured in skeletal muscle.

Results: Compared with healthy mice, DCI mice not only showed decreased cognitive function and abnormal skeletal muscle function, but also showed imbalance of KYN metabolism in brain, circulating blood and skeletal muscle. Fortunately, ZSWF administration for 8 weeks notably attenuated the cognitive function, synaptic plasticity and skeletal muscle function in DCI mice. Besides, ZSWF significantly attenuated KYN metabolism in brain, circulation and skeletal muscle of DCI mice. Furthermore, ZSWF activated PGC1α-PPARα in skeletal muscle of DCI mice.

Conclusions: These results indicate that abnormal PGC1α-PPARα signaling in skeletal muscle mediating KYN metabolism disorder is one of the pathological mechanisms of DCI, and ZSWF can reverse diabetes-induced cognitive impairment via activating skeletal muscle PGC1α-PPARα signaling to maintain KYN metabolism homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2022.154000DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
52
kyn metabolism
20
skeletal
14
muscle
13
cognitive impairment
12
pgc1α-pparα signaling
12
muscle function
12
dci mice
12
shen wan
8
wan fang
8

Similar Publications

Nitric oxide (NO) is a ubiquitous signaling molecule known to modulate various physiological processes, with specific implications in skeletal muscle and broader applications in exercise performance. This review focuses on the modulation of skeletal muscle function, mitochondrial adaptation and function, redox state by NO, and the effect of nitrate supplementation on exercise performance. In skeletal muscle function, NO is believed to increase the maximal shortening velocity and peak power output of muscle fibers.

View Article and Find Full Text PDF

Introduction: Various reports have confirmed that low skeletal muscle mass, a proxy marker of sarcopenia, can be a risk factor for surgical and oncological outcomes in colon cancer. We aimed to investigate the effects of skeletal muscle mass index (SMMI) on postoperative complications, overall survival (OS), and disease-free survival (DFS) in older patients with colon cancer who underwent elective curative colon resections.

Materials And Methods: Patients over 65 years old with stage I-III colon cancer who underwent elective curative colon resections between January 2015 and December 2023 were included in this single-center retrospective longitudinal study.

View Article and Find Full Text PDF

Background: The purpose of this study was to clarify the relationships of the tibialis anterior tendon (TAT) and peroneus longus tendon (PLT) with articular cartilage degeneration on the medial cuneiform and first metatarsal.

Methods: We examined 100 feet from 50 Japanese cadavers. The TAT was classified into 4 types based on attachment site area and number of fiber bundles: Type I, two fiber bundles with equal (within 20%) attachment site areas on the first metatarsal and medial cuneiform; Type II, with two fiber bundles and a larger (>20%) attachment site area on the medial cuneiform than on the first metatarsal; Type III, with two fiber bundles and a larger (>20%) attachment site area on the first metatarsal than on the medial cuneiform; and Type IV, with three fiber bundles.

View Article and Find Full Text PDF

Background: Osteoporosis and sarcopenia frequently occur in patients with end-stage renal disease undergoing hemodialysis (HD), and depression is also a common mental health issue in this population. Despite the prevalence of these conditions, the interrelationships among them remain poorly understood in HD patients.

Methods: In this multicenter cross-sectional study, 858 HD patients from 7 dialysis centers were recruited.

View Article and Find Full Text PDF

Physical activity, cathepsin B, and cognitive health.

Trends Mol Med

January 2025

Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Regular physical activity (PA) is beneficial for cognitive health, and cathepsin B (CTSB) - a protease released by skeletal muscle during PA - acts as a potential molecular mediator of this association. PA-induced metabolic and mechanical stress appears to increase plasma/serum CTSB levels. CTSB facilitates neurogenesis and synaptic plasticity in brain regions (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!