Severity: Warning
Message: file_get_contents(https://...@cu-bif+nanoassemblies&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of intelligent designs of new antibacterial modalities for diagnosing and treating chronic multidrug-resistant bacterial infections is an urgent need, but achieving the precisive theranostic in response to specific inflammatory microenvironments remains a great challenge. This paper describes our work designing and demonstrating infection microenvironment-activated core-shell Gd-doped BiS@Cu(II) boron imidazolate framework (BiS:Gd@Cu-BIF) nanoassemblies. Upon exposure to a single beam of 808 nm laser, BiS:Gd@Cu-BIF nanoassemblies showed exceptional photothermal conversion (η = 52.6%) and produced several cytotoxic reactive oxygen species, such as singlet oxygen and hydroxyl radicals, by depleting the intracellular glutathione and in-situ catalyzing the decomposition of endogenous hydrogen peroxide in the inflammatory microenvironment. The broad-spectrum antibacterial properties of nanoassemblies were confirmed to be effective against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) with an inhibition rate of 99.99% in vitro. Additionally, in vivo wound-healing studies revealed that BiS:Gd@Cu-BIF nanoassemblies could serve as an effective wound spray to accelerate healing following MRSA infections via photothermal/chemodynamic (PTT/CDT) synergistic therapy. The effective wound healing rate in the synergistic treatment group was 99.8%, which is higher than the 69.5% wound healing rate in the control group. Furthermore, magnetic resonance and computed tomography dual-modal imaging mediated by BiS:Gd@Cu-BIF nanoassemblies also exhibits promising potential as an integrated diagnostic nanoplatform. Overall, this work provides useful insights for developing all-in-one theranostic nanoplatforms for clinical treatment of drug-resistant bacterial infections. STATEMENT OF SIGNIFICANCE: New treatments and effective diagnostic strategies are critical for fighting drug-resistant bacterial infections. Infection microenvironment-activated BiS@Cu-BIF nanoassemblies can simultaneously increase eigen temperature and generate cytotoxic reactive oxygen species, such as singlet oxygen and hydroxyl radicals, under near-infrared laser irradiation, achieving the synergistic effect of photothermal and chemodynamic therapy, which has been proven to be highly effective for inhibiting bacterial activity and speeding wound healing from methicillin-resistant Staphylococcus aureus infection. More importantly, the nanoassemblies could enable early precise visualized detection of bacterial abscess using magnetic resonance/computed tomography dual-modal bio-imaging techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2022.02.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!