Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The aim of this study was to coat titanium substrate with bioactive glass nanoparticles and characterize the deposited surface coat.
Materials And Methods: Amorphous bioglass nanoparticles < 20 nm in diameter were prepared using a modified sol-gel technique followed by a ball-milling process. The prepared nanoparticles were used to coat airborne particle-abraded titanium disks. The in vitro bioactivity of the bioglass nanopowder was confirmed using simulated body fluid. Coated surfaces were characterized in terms of microstructure, composition, thickness, phase structure, surface roughness, wettability, and tissue behavior in a rabbit model.
Results: Bioglass nanoparticles showed apatite formation under a scanning electron microscope (SEM) after 5 days, confirming that bioactivity was enhanced with increasing degradation rate for up to 2 weeks. An optimized deposition technique and heat-treatment process produced a homogenous coating with a uniform thickness of 32 to 39 μm. Chemical analysis confirmed the presence of silicon and calcium on the coated disks. Amorphous coated surfaces exhibited porous nano/microroughness with microcracks and super-hydrophilicity. The interface of the coated disks with subcutaneous tissue revealed good tissue adhesion, high cellular activity, and rich vascularization, with multinucleated cells in the microenvironment surrounding the coat, as confirmed using histomorphometric analysis.
Conclusion: The results of this study show that it is feasible to coat titanium surfaces with bioactive glass nanoparticles with super-hydrophilicity and high biologic activity. These particles may promote the regenerative environment around dental implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11607/jomi.9156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!