AI Article Synopsis

  • LXA4 has anti-inflammatory effects by influencing macrophage polarization, specifically inhibiting pro-inflammatory responses induced by lipopolysaccharides (LPSs) and promoting anti-inflammatory responses.
  • LXA4 decreases the production of pro-inflammatory cytokines while enhancing the release of anti-inflammatory cytokines through the downregulation of specific signaling pathways (p-NF-κB p65 and IRF5).
  • Additionally, LXA4 supports the polarization of M2 macrophages by activating the FPR2/IRF4 signaling pathway, illustrating its dual role in macrophage regulation.

Article Abstract

Lipoxin A4 (LXA4) has been shown to have anti-inflammatory activity, but its underlying molecular mechanisms are not clear. Herein, we investigated the potential role of LXA4 in macrophage polarization and elucidated its possible molecular mechanism. The RAW264.7 macrophage cell line was pretreated with LXA4 with or without lipopolysaccharides (LPSs) and interleukin-4 (IL-4). In cultured macrophages, LXA4 inhibited LPS-induced inflammatory polarization, thereby decreasing the release of proinflammatory cell factors (IL-1β, IL-6, TNF-α) and increasing the release of anti-inflammatory cytokines (IL-4 and IL-10). Notably, the inhibitory effect of LXA4 on inflammatory macrophage polarization was related to the downregulation of p-NF-κB p65 and IRF5 activity, which reduced the LPS-induced phenotypic and functional polarization of M1 macrophages via the FPR2/IRF5 signaling pathway. Moreover, LXA4 also induced the IL-4-induced polarization of M2 macrophages by promoting the FPR2/IRF4 signaling pathway. Therefore, LXA4 regulates M1/M2 polarization of macrophages via the FPR2-IRF pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10787-022-00942-yDOI Listing

Publication Analysis

Top Keywords

macrophage polarization
12
polarization macrophages
12
regulates m1/m2
8
fpr2-irf pathway
8
signaling pathway
8
pathway lxa4
8
polarization
7
lxa4
7
lipoxin regulates
4
macrophage
4

Similar Publications

-polarized M2-like tumor-associated macrophages accelerate colorectal cancer development via IL-8 secretion.

Anim Cells Syst (Seoul)

December 2024

Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

(), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

Prevention of radiotherapy-induced pro-tumorigenic microenvironment by SFK inhibitors.

Theranostics

January 2025

College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.

Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!