A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data Quality of Automated Comorbidity Lists in Patients With Mental Health and Substance Use Disorders. | LitMetric

Data Quality of Automated Comorbidity Lists in Patients With Mental Health and Substance Use Disorders.

Comput Inform Nurs

Author Affiliations: Rory Meyers College of Nursing, New York University, New York, NY (Drs Woersching, Van Cleave, Ma, and Haber); Fox Chase Cancer Center, Philadelphia, PA (Dr Egleston); and University of Connecticut, School of Nursing, Storrs, CT (Dr Chyun).

Published: July 2022

EHRs provide an opportunity to conduct research on underrepresented oncology populations with mental health and substance use disorders. However, a lack of data quality may introduce unintended bias into EHR data. The objective of this article is describe our analysis of data quality within automated comorbidity lists commonly found in EHRs. Investigators conducted a retrospective chart review of 395 oncology patients from a safety-net integrated healthcare system. Statistical analysis included κ coefficients and a condition logistic regression. Subjects were racially and ethnically diverse and predominantly used Medicaid insurance. Weak κ coefficients ( κ = 0.2-0.39, P < .01) were noted for drug and alcohol use disorders indicating deficiencies in comorbidity documentation within the automated comorbidity list. Further, conditional logistic regression analyses revealed deficiencies in comorbidity documentation in patients with drug use disorders (odds ratio, 11.03; 95% confidence interval, 2.71-44.9; P = .01) and psychoses (odds ratio, 0.04; confidence interval, 0.02-0.10; P < .01). Findings suggest deficiencies in automatic comorbidity lists as compared with a review of provider narrative notes when identifying comorbidities. As healthcare systems increasingly use EHR data in clinical studies and decision making, the quality of healthcare delivery and clinical research may be affected by discrepancies in the documentation of comorbidities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262752PMC
http://dx.doi.org/10.1097/CIN.0000000000000889DOI Listing

Publication Analysis

Top Keywords

data quality
12
automated comorbidity
12
comorbidity lists
12
quality automated
8
mental health
8
health substance
8
substance disorders
8
ehr data
8
logistic regression
8
deficiencies comorbidity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!