Engine damage as a consequence of foreign object debris (FOD) during flight is frequently caused by birds. One approach to minimising disruption caused by this damage is to provide flight crew with accurate information relating to the continuing operational status of the aircraft's engines. Before designing such avionic systems however, understanding of current procedures is needed. Hierarchical Task Analysis (HTA) and Systematic Human Error Reduction and Prediction Approach (SHERPA) were used to identify potential failures that flight crew may make when managing an engine bird strike. Workshops with commercial pilots generated insights into current practice and a commercial pilot SME reviewed outputs for accuracy. Over 200 potential failures were identified, most commonly related to communication. Remedial measures, considering future avionic systems, are proposed to mitigate identified failures. This analysis provides a starting point for future design concepts for assisting flight crew in dealing with engine malfunction due to FOD strikes. Hierarchical Task Analysis was conducted to show all tasks involved in dealing with an in-flight aircraft engine bird strike. Systematic Human Error Reduction and Prediction Approach analysis was performed and over 200 possible failures were identified when managing this event. Remedial measures are proposed to help mitigate possible failures.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00140139.2022.2048897DOI Listing

Publication Analysis

Top Keywords

engine bird
12
bird strike
12
flight crew
12
failures flight
8
aircraft engine
8
avionic systems
8
hierarchical task
8
task analysis
8
systematic human
8
human error
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!