Suppresses Microbe-Associated Molecular Pattern (MAMP)-Triggered Callose Deposition and Can Penetrate Leaf Tissue.

Microbiol Spectr

Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalemgrid.9619.7, Rehovot, Israel.

Published: April 2022

Beneficial microorganisms need to overcome the plant defense system to establish on or within plant tissues. Like pathogens, beneficial microbes can manipulate a plant's immunity pathways, first by suppressing and hiding to establish on the host and then by inducing resistance to protect the plant. In the current study, we demonstrated that although Pseudozyma aphidis can activate microbe-associated molecular pattern (MAMP)-associated genes, it does not activate MAMP-triggered callose deposition and can, moreover, suppress such deposition triggered by Flg22 or chitin. While MAMP-associated gene activation by P. aphidis was not dependent on salicylic acid, jasmonic acid, or ethylene signaling, suppression of MAMP-triggered callose deposition required the salicylic acid and jasmonic acid signaling factors JAR1-1 and E3 ubiquitin ligase COI1 yet did not rely on EIN2, NPR1, or the transcription factor JIN1/MYC2. We also demonstrated the ability of , known to be an epiphytic yeast-like organism, to penetrate the stomata and establish within plant tissues, as do endophytes. These results thus demonstrate the potential of to suppress MAMP-elicited defenses in order to establish on and within host plant tissues. Our study demonstrates the ability of to penetrate into plant tissues, where it avoids and overcomes plant defense systems in order to establish and subsequently protect the plant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941903PMC
http://dx.doi.org/10.1128/spectrum.02638-21DOI Listing

Publication Analysis

Top Keywords

plant tissues
16
mamp-triggered callose
12
callose deposition
12
microbe-associated molecular
8
molecular pattern
8
plant
8
plant defense
8
establish plant
8
establish host
8
protect plant
8

Similar Publications

Aggressiveness and phylogenetic relationship of associated with crown and root rot in pyrethrum plants.

Plant Dis

January 2025

The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;

In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.

View Article and Find Full Text PDF

Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.

View Article and Find Full Text PDF

In order to identify the pathogen responsible for Hedera nepalensis leaf blight and investigate effective biocontrol strategies, samples were collected from 10 significantly infected areas at Southwest Forestry University; four to six infected leaves were gathered from each area, followed by the isolation and purification of strains from the infected plant leaves using tissue isolation and hyphae-purification techniques. We conducted an examination of the biological characteristics and compared the inhibitory effects of different concentrations of Phomopsis sp. (50%, 25%, 16.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.

View Article and Find Full Text PDF

Xylosandrus ambrosia beetles preference of nursery tree species for attacks and colonization under water stress.

J Insect Sci

January 2025

Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.

The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!