Standardization and quality assurance of microbiome community analysis by high-throughput DNA sequencing require widely accessible and well-characterized reference materials. Here, we report on newly developed DNA and whole-cell mock communities to serve as control reagents for human gut microbiota measurements by shotgun metagenomics and 16S rRNA gene amplicon sequencing. The mock communities were formulated as near-even blends of up to 20 bacterial species prevalent in the human gut, span a wide range of genomic guanine-cytosine (GC) contents, and include multiple strains with Gram-positive type cell walls. Through a collaborative study, we carefully characterized the mock communities by shotgun metagenomics, using previously developed standardized protocols for DNA extraction and sequencing library construction. Further, we validated fitness of the mock communities for revealing technically meaningful differences among protocols for DNA extraction and metagenome/16S rRNA gene amplicon library construction. Finally, we used the mock communities to reveal varying performance of metagenome-based taxonomic profilers and the impact of trimming and filtering of sequencing reads on observed species profiles. The latter showed that aggressive preprocessing of reads may result in substantial GC-dependent bias and should thus be carefully evaluated to minimize unintended effects on species abundances. Taken together, the mock communities are expected to support a myriad of applications that rely on well-characterized control reagents, ranging from evaluation and optimization of methods to assessment of reproducibility in interlaboratory studies and routine quality control. Application of high-throughput DNA sequencing has greatly accelerated human microbiome research and its translation into new therapeutic and diagnostic capabilities. Microbiome community analyses results can, however, vary considerably across studies or laboratories, and establishment of measurement standards to improve accuracy and reproducibility has become a priority. The here-developed mock communities, which are available from the NITE Biological Resource Center (NBRC) at the National Institute of Technology and Evaluation (NITE, Japan), provide well-characterized control reagents that allow users to judge the accuracy of their measurement results. Widespread and consistent adoption of the mock communities will improve reproducibility and comparability of microbiome community analyses, thereby supporting and accelerating human microbiome research and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941912 | PMC |
http://dx.doi.org/10.1128/spectrum.01915-21 | DOI Listing |
Acta Biomater
January 2025
Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:
Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Family, Population, and Preventative Medicine, Stony Brook Medicine, Stony Brook, NY 11794, USA.
Human papillomavirus (HPV) is the most common sexually transmitted infection and plays a significant role in cervical, penile, anal, vaginal, vulvar, and oropharyngeal cancers as well as non-cancerous genital warts and genital dysplasia. In the United States, there are approximately 46,000 new HPV-related cancers a year. There is an effective vaccine to prevent over 90% of these cancers and other HPV-related diseases; however, those that are aged 18-26 have the lowest vaccine rates among eligible age groups.
View Article and Find Full Text PDFMicroorganisms
November 2024
Centre for Translational Medicine, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
Automated nucleic acid extractors are useful instruments for the high-throughput processing of bio-samples and are expected to improve research throughput in addition to decreased inter-sample variability inherent to manual processing. We evaluated three commercial nucleic acid extractors Bioer GenePure Pro (Bioer Technology, Hangzhou, China), Maxwell RSC 16 (Promega Corporation, Madison, WI, USA), and KingFisher Apex (ThermoFisher Scientific, Waltham, MA, USA) based on their DNA yield, DNA purity, and 16S rRNA gene amplicon results using both human fecal samples and a mock community (ZymoBIOMICS Microbial Community Standard (Zymo Research Corp., Irvine, CA, USA)).
View Article and Find Full Text PDFFront Bioinform
December 2024
Bioengineering Unit, Life Sciences Department, Walloon Agricultural Research Centre, Gembloux, Belgium.
Brief Bioinform
November 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70126, Bari, Italy.
The advent of high-throughput sequencing (HTS) technologies unlocked the complexity of the microbial world through the development of metagenomics, which now provides an unprecedented and comprehensive overview of its taxonomic and functional contribution in a huge variety of macro- and micro-ecosystems. In particular, shotgun metagenomics allows the reconstruction of microbial genomes, through the assembly of reads into MAGs (metagenome-assembled genomes). In fact, MAGs represent an information-rich proxy for inferring the taxonomic composition and the functional contribution of microbiomes, even if the relevant analytical approaches are not trivial and still improvable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!